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ABSTRACT
Developing an optimizing compiler for a newly proposed architecture is ex-
tremely difficult when there is only a simulator of the machine available.
Designing such a compiler requires running many experiments in order
to understand how different optimizations interact. Given that simulators
are orders of magnitude slower than real processors, such experiments are
highly restricted. This paper develops a technique to automatically build a
performance model for predicting the impact of program transformations on
any architecture, based on a limited number of automatically selected runs.
As a result, the time for evaluating the impact of any compiler optimiza-
tion in early design stages can be drastically reduced such that all selected
potential compiler optimizations can be evaluated. This is achieved by first
evaluating a small set of sample compiler optimizations on a prior set of
benchmarks in order to train a model, followed by a very small number of
evaluations, or probes, of the target program.
We show that by training on less than 0.7% of all possible transformations
(640 samples collected from 10 benchmarks out of 880000 possible sam-
ples, 88000 per training benchmark) and probing the new program on only 4
transformations, we can predict the performance of all program transforma-
tions with an error of just 7.3% on average. As each prediction takes almost
no time to generate, this scheme provides an accurate method of evaluat-
ing compiler performance, which is several orders of magnitude faster than
current approaches.

Categories and Subject Descriptors
D.3 [Software]: Programming languages; D.3.4 [Programming
languages]: Processors—Compilers, Optimization; I.2.6 [Artificial
intelligence]: Learning—Induction

General Terms
Performance, Experimentation, Languages

Keywords
Compiler optimization, Architecture, Performance Modelling, Ma-
chine learning, Artificial Neural Networks
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Computer architectures have significantly increased in complex-
ity in the last 20 years. As a result, simulators have also become
increasingly complex and, critically, three or more orders of mag-
nitude slower than real processors. However, early on in the design
cycle of a new processor, software and compiler engineers need
to port system applications, develop compilers, tune libraries and
run large applications for prospective customers on the new tar-
get architecture before the processor is available. They therefore
have to rely on simulators for their task. As the design cycle is
long, software and compiler engineers are left with using exceed-
ingly slow simulators for tuning purposes. Several years can elapse
between the time a first simulator is available, and the time the ac-
tual architecture is available. This problem is further aggravated by
stringent time-to-market constraints, and the increasing complexity
of compilers [2]. What is needed is a fast proxy of the hardware.
Given a new program, we would like an accurate prediction of the
performance of the program without having to run it, or perhaps
only running it a few times. This would dramatically overcome the
performance shortcomings of existing simulators and allow many
different versions of a program to be evaluated for tuning purposes.

In this article, we propose a method for drastically reducing the
overall time required to tune applications for new architectures early
on in the design cycle, when only slow simulators are available. We
can build a performance model of a new architecture that is accu-
rate enough for program tuning purposes and dramatically faster
than simulators. Though model construction requires a number of
training runs on the available simulator, it is entirely automatic.
This model is built by monitoring how programs react to certain
program transformations on the target architecture. The model is
first trained using a few programs to which program transforma-
tions are randomly applied; then it requires a few test runs from
a selection of characteristic transformations for the program to be
tuned. These latter characteristic transformations are selected au-
tomatically based on a technique called mutual information, which
determines the transformations likely to give the most information
about a program’s performance on a particular machine. From then
on, the model can instantly estimate the speedup of the target pro-
gram if any known program transformation were applied; in fact,
the model enables the evaluation of all program transformations in
any order and in a very small time. We empirically show that with
640 training runs (corresponding to only 0.7% of the total number
of possible transformations sequences), and 4 test runs to charac-
terize a new target program, our model can predict the program
speedup after applying a transformation with an error of 7.3%.

Beyond providing an automatic process for building a reliable
and fast performance model, our approach has several assets. The
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Figure 1: Model accuracy for compress. The y-axis corresponds
to the speedup of each transformation sequence relative to the origi-
nal untransformed program. The x-axis corresponds to transforma-
tion sequences sorted in increasing order of performance. The line
marked actual corresponds to the real measured performance of
the program while predicted corresponds to the prediction of our
model. The prediction is averaged over 30 trials.
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Figure 2: Actual speedups for all transformations applied to
3 benchmarks, sorted according to the speedup achieved for
compress (one trial). The comparison highlights the differences in
both the absolute and relative program behavior to transformations.

model can not only be used to predict the impact of a program
transformation, but can also predict the best possible speedup after
applying any known transformation. Beyond the initial training,
the model accuracy can be regularly improved through continuous
on-line training. Any simulation performed on any program af-
ter the initial training, including the test runs to characterize new
programs, can augment the total training set, all without any hu-
man intervention. Moreover, since the model provides speedup es-
timates in almost no time, it has applications beyond the design
cycle since it is much faster than running applications on the real
machine. It can be used for benchmarking purposes, i.e., tuning
applications of prospective customers, and can even be provided
to end-users. Finally, the approach can also be used by architec-
ture designers to take into account the impact of software tuning
when designing architectures. After a number of training runs on a
given simulator configuration during design-space exploration, our
model would behave as if a compiler had been tuned for this ar-
chitecture configuration. Design decisions would then not only be
based upon estimated architecture performance but combined esti-
mated architecture+compiler performance.

The paper is organized as follows: Section 2 provides an ex-
ample showing how our automatically generated model can predict
the speedups over a large transformation space. Section 3 describes
our reactions-based predictive modeling technique and how we au-
tomatically find the best transformations to characterize a program.
Section 4 describes the experimental methodology, while Section 5
provides empirical evidence of the accuracy of our technique, fol-
lowed by related work in Section 6 and conclusions in Section 7.

2. EXAMPLE
Let us assume that we are at the beginning of the design cycle

of a processor, that only a performance simulator is available, and
that software and compiler engineers start tuning applications for
this processor. In this section, we provide a simple example show-
ing that it is possible to automatically train a model, using a number
of runs on a few benchmarks, in order to predict the performance
impact of compiler optimizations on any new program. As a result,

we can drastically reduce the overall simulation time necessary to
evaluate tentative architectures and tune programs to new architec-
tures; using the model has virtually no cost.

We wish to predict the performance of a new program on a par-
ticular platform, in this case the Texas Instrument C6713 clustered
VLIW processor. In order to evaluate our predictor, we generate
many different versions of the program using 13 different program
transformations, listed in Table 5. We wish to predict what effect
any combination of these will have on any new program. Since
program transformations can be composed into arbitrarily long se-
quences, the number of possible program versions is large. In
practice, combinations of 5 transformations are a reasonable max-
imum. As a result, the total transformation space size we consider
is ��������� . Thus, we wish to build a model that can predict the per-
formance of ��������� different versions of a new program.

In order to collect the data for our model, we performed 640 runs
of randomly chosen transformations on training benchmarks (10
training benchmarks, 64 samples per benchmark). Then 4 carefully
selected runs are performed on a new program. These runs are
used to “probe” the new program, and characterize its reactions
to program transformations. We will show that only a few such
probes are necessary to characterize the new program behavior on
a large range of program transformations. We call such an approach
reactions-based modeling. Given this total of 644 evaluations, we
are then able to build a model that accurately predicts the entire
��������� different versions of the program.

In order to validate the accuracy of our model, we have exhaus-
tively searched the transformation space for each of the benchmarks
on the TI C6713 processor, with a total running time of 33 days.
Figure 1 shows how the model accuracy is exercised on program
compress. The y-axis is the speedup obtained after applying
a transformation, and the x-axis is simply the transformations se-
quences sorted by increasing (actual) speedup. The dotted line
shows the speedup estimated by the model, and the solid line is the
actual speedup. The average error is 10.3% for this benchmark.

At first, it may be surprising that such a small training set size
is sufficient to capture such a huge space. However, Figure 2 ex-
plains why this is possible: programs exhibit a “plateau”-like pro-
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Figure 3: Features-based model. Input: static features extracted
from the transformed program at the source level; Output: program
speedup.
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Figure 4: Reactions-based model. Input: target transformation and
speedups on canonical transformation sequences; Output: transfor-
mation sequence speedup.

file, which means there are few different performance levels for
each benchmark, or, in other words, many transformation sequences
have similar impact. Almagor et al. [2] have built similar speedup
graphs which again show few plateaus, but for different transfor-
mation spaces. As a result of this small number of plateaus, if (1)
we can automatically identify a few characteristic transformations
which capture these plateaus, and (2) we can cluster transforma-
tions according to the performance plateau to which they belong,
we can build a performance model with a small number of training
runs. This is what we achieve with reactions-based modeling.

Still, it does not mean the behavior of all benchmarks to all trans-
formations is the same, and that the transformation space is easily
predicted. Figure 2 shows the same speedup graph as in Figure 1,
using the transformation order given by benchmark compress to
plot benchmarks adpcm and fir. If all benchmarks would react
similarly to most transformations, all the benchmark curves would
be monotonic and increasing. Obviously it is not the case, hinting
at the complexity of the transformation space.

Figure 1 shows that we can fairly accurately predict the perfor-
mance of different versions of an unseen program. Still, it may
be argued that, in practice, a tuning process may involve man-
ual transformations not considered here. However, manual trans-
formations can usually be decomposed into sequences of simple
systematic compiler transformations, as recently illustrated by Par-
ello et al. [22]. Furthermore, our code characterization process
based on reactions can indifferently target whole programs or spe-
cific code sections, because it solely relies on performance mea-
surements/reactions and is not dependent on code structure.

This section has provided a motivating example, illustrating that
it is possible to build a model that predicts the performance of dif-
ferent versions of a program without having to execute the program.
The next section describes how we can automatically build such a
model using machine learning.

3. PREDICTIVE PERFORMANCE MODEL-
ING

3.1 Characterization
At the heart of our approach is building a performance predic-

tion model. More precisely, the model must accurately and rapidly
predict the performance impact (speedup) of a large range of pro-
gram transformations on a given program, so that a large software
design-space can be explored without having to simulate or run the
multiple transformed versions of the program.

More formally, let � be a program, � a program transformation

sequence, and � the speedup of � after applying � , we wish to build
a predictive performance model � , that predicts a speedup �� close
to the real speedup � , i.e., �������	��

���� . In standard predictive mod-
eling techniques, such a model is built using a training set, here, a
set of tuples ������������������
 .
3.1.1 Static program features-based modeling

Most machine-learning approaches applied to compiler optimiza-
tion have used program features-based characterization to automat-
ically build such a model (see Section 6). This approach implicitly
assumes one can identify a set of static program features which
characterize program behavior. Features-based modeling takes a
summary ��� of the input static program � . In order to capture the
effect of program transformations, we collect the static features at
the source code level, after applying program transformations using
SUIF, see Figure 3.

After training, the model function � takes as inputs the code fea-
tures of the transformed program ��� , and outputs the predicted
speedup, e.g.: ����� � 

���� .

Such an approach is attractive because the transformed program
needs not be executed in order to predict its performance, and it has
been successfully used in the past for specific optimizations, e.g.,
targeting loop nests. Moreover, this approach can be used on any
new transformed program since the model just uses code features
as input. In particular, the model is not restricted to the set of trans-
formations used during training; a new transformation can be used
to generate the transformed program. However, it is harder to ex-
tract appropriate features to characterize a whole program, and we
will also empirically show in Section 5 that features-based charac-
terization does not perform as well when a large range of program
transformations is considered.

As a result, we need to come up with a different characterization
method, compatible with a large range of program transformations
and whole-code characterization.

3.1.2 Reactions-based modeling
Building an analytical model of the performance behavior of a

complex program on a modern processor architecture is known to
be a difficult task [4]. Rather than building a processor performance
model, we have developed a modeling approach capable of captur-
ing the performance effect of program transformations which we
call characterization by reactions. Characterization by reactions is
an empirical analysis method used in many scientific domains. A
new target may be “probed” in various ways, and its reactions are
observed. If previously studied targets had similar reactions, the
new target may be classified to be similar to one of the previous



targets or a combination of some of these targets.
The principles of characterizing programs by reactions are ex-

actly the same. In our case, the “probes” are automatically selected
program transformations which are applied to the program, and the
behavior observed is the resulting speedup. Using this approach,
we build a model � which takes as inputs the reactions ����� ��� ��� 

(i.e., the speedups after applying transformation � � ) of the program� to carefully chosen transformation sequences ��� ������� ���
	 , and a
new transformation sequence � . We use the trained model in or-
der to predict speedups on new programs and transformation se-
quences: ����� � � � � ��� 
 ������� � � 	 � � 	 ��� 
 ����
 � �� – see Figure 4.

Because this characterization method is based on program run-
time behavior rather than a static program characterization (as for
features), it is well suited to whole-code characterization, as op-
posed to small code constructs, e.g., loop nests. On the other hand,
it has the disadvantage of requiring � program runs for building a
predictor. However, we empirically show in Section 5 that we can
keep � very small (less than or equal to 4), and still get accurate
predictions.

3.2 Building the model
There exist many modeling techniques that can be to automat-

ically produce a predictive model. In this paper we use a feed-
forward ANN (Artificial Neural Network), with one hidden layer
and five hidden units, as it is robust to noise in its input and ca-
pable of learning real-values outputs - both characteristics of our
problem domain. Our ANNs are trained by standard back propa-
gation on the mean squared error. ANNs are well studied and have
been used in a wide range of domains [5]. We have also considered
other techniques, such as Mixtures of Experts [16] and Regression
Trees [6]; however, our current experience suggests that ANNs may
be particularly practical for the prediction problem.

3.3 ANN
The model is constructed as follows: the inputs are the reac-

tions and the target transformation whose performance impact we
want to predict, and the output is the predicted speedup of the
target transformation. More precisely, for any given program � ,
the inputs of the ANN are the speedups ����� ��� ��� 
 ������� � �
	 � ��	 ��� 

obtained for the � probe transformations, and the identifier � of
the target program transformation. The identifier is provided as
a sequence of 13 bits, one per possible elementary transforma-
tion; since each transformation sequence is composed of elemen-
tary transformations, at most 5 such bits are set to 1. The model is
not trained specific to a program, it is trained on multiple programs,
and can be applied to any unseen program thereafter.

The � probe (or canonical) transformations are chosen to be
most characteristic of the program behavior, and the resulting speedups
may be used to discriminate between the training programs. These
canonical transformations are not defined a priori or in ad-hoc man-
ner; they are learned from data by using a systematic algorithm
which we will now describe.

3.4 Selecting the canonical transformations
We wish to determine the smallest set of canonical transforma-

tions, or probes, with which to characterize a new program. By
observing the canonical speedups for a new program, we want to
be able to say how similar this new program is to each of the train-
ing programs, which may potentially be a useful characterization
for improving predictions. One way to learn such canonical trans-
formations is by using information theory [9], which allows one
to select transformations informative about the underlying bench-
mark.

Let ��� ������� � ��� define random variables describing the speedups
for the � transformations sequences � � ������� ��� � from the training
set. Our goal here is to extract the canonical subset of � trans-
formations � � ��� ������� ��� ����� , such that the resulting improvements� � ��� ������� � � ��� � are most informative about the program � . A for-
mal measure of information is mutual information [9]:� � ��� � ��� ������� � � ��� 
������� � ��� ��� ������� � � ��� 
 �!� ��� ��� ������� ��� ����" � 


������ � �$# 
%�&� �$# " � 
 � (1)

where # ���'��)( � �*� ������� � � ���,+ is the vector of speedups for the canon-
ical transformations, and � �$# 
 , � �$# " � 
 are the marginal and the
conditional entropies respectively:

� �$# 
 ������ �.-'/ � �$# 
103254�� �$# 
 � (2)

� �$# " � 
 ������ �768 9-:<; � -'/ � �$# " � 
103254�� �$# " � 
 (3)

(see e.g. [9]). Our goal is to maximize (1) with respect to the
indices of the canonical transformations =�� ������� ��=$	 .

It is clear that for a given benchmark � , the speedup obtained on
transformation ��� may be found from the training data determinis-
tically. Indeed, it is given by the table look-up, i.e. >?=
� � ����� " � 
A@B ��� � � � � � � ��� 
�
 . Analogously we can compute the marginal distri-
butions � ��� ��
 by counting the speed-ups across the programs. Ad-
ditionally, we note that for all transformations, the corresponding
speedups are conditionally independent given � , i.e.

� �$# " � 

� 	C
D�; � � �'E �3F " � 
G@ B � (4)

As there is no uncertainty in determining speedup � � for transfor-
mation ��� and a given program � , the conditional entropy � �$# " � 

may be dropped from the objective function (1); in other words,
optimization of the mutual information (1) reduces in our case to
optimization of the marginal entropy � �$# 
 .

In general, computation of � �$# 
 is a difficult task. For ex-
ample, if the speed-ups are quantized to lie in a discrete space ofH

bins, the computational complexity of evaluating � �$# 
 is @I � H 	 
 , i.e. approximations need to be considered. We use the as-
if Gaussian approximation � �$# 
KJ � 6
L5M 
103254 " N 2
O��$# 
 "�PRQ�SUT � � ,
which effectively reduces the optimization problem to maximizing
the volume of the covariance of the selected canonical speedups.
We also impose an additional constraint such that each canoni-
cal transformation should be individually predictive about the pro-
gram, i.e. � ��� ��V � � 
XWZY for some Y[W � (here � ��� ��V � � 
 is defined
similarly to (1)).

Our method has a useful interpretation as an approximate redun-
dancy reduction. In our case, equation (1) can be transformed into
the following form

� � ��� # 

�
	-D\; �
� ��� � F � � 
]�^- / ���$# 
_0`2a4 � �$# 
b 	D�; � � ��� �3F 
 � (5)

The rightmost term in (5) defines the redundancy, which is zero
when the speedups are independent, and it is large when they are
strongly correlated. In order to select the most informative subset of
transformations (in the mutual information sense), we need to opti-
mize (5) with respect to the indices of the canonical transformations=
� ������� ��=c	 . The computation of the first term d 	D\; � � ��� �`F � � 
 �d 	D�; � � ��� �3F�
 , is @ I � H � 
 , where

H
is the number of quantiza-

tion bins. However, computation of the redundancy is difficult and



Label Transformation
1,2,3,4 Loop unrolling
n FOR loop normalization
t Non-perfectly nested loop conversion
k Break load constant instructions
s Common subexpression elimination
d Dead code elimination
h Hoisting of loop invariants
i IF hoisting
m Move loop-invariant conditionals
c Copy propagation

Figure 5: The labeled transformations used for the exhaustive enu-
meration of the space. 1,2,3,4 corresponds to the loop unroll factor.

Label Static Feature
LDC Load a constant value
CVT Conversion between float/int
LOD Load from memory
STR Store to memory
MBR Multi-way branch
CMPI/CMPF Comparison using int/float
UJMP/CJMP Unconditional/Conditional jump
CPY Copy
SFT Shift
ROT Rotation
ARII/ARIF Arithmetic operation on int/float
MULI/MULF Multiplication on int/float
DIVI/DIVF Division on int/float
LOG Logical operation
CAL Function call
ARYI/ARYF Array operation with int/float (address computation)

Figure 6: Static program features.

needs to be approximated. To maximize (5), we apply a simple
greedy approximation strategy by choosing transformations which
lead to a high information content individually, and which are ap-
proximately maximally independent from one another.

Specifically, by using the Gaussian approximation, we are greed-
ily maximizing the log determinant of the sample covariance of
the canonical speedups 032a4 " N 2
O��$# 
 " for transformations which in-
dividually have large marginal entropies � ��� � F 
 . In practice, we
recalculate the best canonical transformations as we progressively
collect more training data, and we experimented with the number
of canonicals in the range of 1 to 8. Once we have selected the
canonical transformations containing the most information, we ap-
ply them to the program to be predicted. Their execution times are
the final inputs into our trained proxy model.

4. EXPERIMENTAL METHODOLOGY
This section provides a brief description of the programs, trans-

formations and platforms used in our experiments.

4.1 Benchmarks
The UTDSP [19, 24] benchmark suite was designed “to evalu-

ate the quality of code generated by a high-level language (such
as C) compiler targeting a programmable digital signal processor
(DSP)” [19]. This set of benchmarks contains small, but compute-
intensive DSP kernels as well as larger applications composed of
more complex algorithms. The size of programs ranges from 20
to 500 lines of code. These programs represent compute-intensive
kernels widely regarded most important by DSP programmers and
are used indefinitely in stream-processing applications.

4.2 Transformations
In this study, we consider source-to-source transformations (many

of these transformations also appear within the optimization phases
of a native compiler [2]), applicable to C programs and available
within the restructuring compiler SUIF 1 [14]. For the purpose
of this paper, we have selected the transformations described and
labeled in Table 5. As we (arbitrarily) consider four loop unroll

factors, this increases the number of transformations considered to
13. We then exhaustively evaluated all transformations sequences
of length 5 selected from these 13 options. So, in theory, the to-
tal number of possible transformation sequences is given by the
combinational expression ��� ��� � ������ ����� � 	 � � 6 
��
�
��� , since no
transformation can appear twice in the sequence and the order of
transformations has an influence on performance. However, since
unrolling can only appear once in any sequence (only one possible
unroll factor), it decreases the total number of possible sequences
we evaluated to 88000 per benchmark.

4.3 Platforms
Most of the results in Section 5 are provided for a TI processor

architecture described below. However, in order to show that our
approach is not specific to an architecture, we also provide results
for an embedded AMD processor architecture in Section 5.5; this
AMD processor is based on a MIPS core, so we will later refer to
it as MIPS. The platforms are detailed below.

TI: The Texas Instrument C6713 is a high-end floating point
DSP, running at 300MHz. The wide clustered VLIW processor has
256KB of internal memory. The programs were compiled using
the TI’s Code Composer Studio Tools Version 2.21 compiler with
the highest -O3 optimization level and -ml3 flag (generates large
memory model code).

MIPS: The AMD Alchemy Au1500 processor is an embedded
SoC processor using a MIPS32 core (Au1), running at 500MHz.
It has 16KB instruction cache and 16KB non-blocking data cache.
The programs were compiled with GCC 3.2.1 with the -O3 com-
pile flag. According to the manufacturer, this version/option gives
the best performance - better than later versions of GCC - and hence
was used in our experiments.

4.4 Training the model
In our experiments we vary the training set size to consider its

impact on performance. In all cases, this is performed using “leave
one out” cross-validation, a standard technique for evaluating ANNs
and other predictive models. Basically, this means that, if we have� programs, we select one program whose performance we wish
to predict with respect to transformations. We then use data from
the � � 6 remaining programs to train our ANN; before testing it
on the selected � th program; we repeat this procedure for the �

programs and average results. Thus, we do not train the ANN on
data associated with the program whose performance we wish to
predict.

The training set consists of randomly picked samples within the
transformation space (recall the transformation space contains ���������

possible transformation sequences). In order to get a statistically
significant behavior, we repeat this sampling 30 times. Thus, for
each sample size, we show the average result over the 30 trials.

Finally, note that for the reactions approach, in addition to the
training set, we need one more simulation/execution of the base-
line program to compute the speedups (ratio of baseline over trans-
formed versions) of the canonical transformations, which are used
as inputs to the model.

5. EXPERIMENTAL RESULTS
This section first evaluates the accuracy of reactions-based mod-

eling across the program transformation space and also examines
its accuracy in predicting high-speed up optimizations. This is fol-
lowed by a short evaluation of the standard features-based approach
to modeling. Next we consider the trade-off between accuracy of
prediction and the number of training examples we use. This is
followed by an evaluation of how the number of canonical trans-



formations also affects predictive power. Finally, we try a simple
cross-platform study where we train on one platform and use it to
predict performance on a new unseen machine.

5.1 Reactions-Based approach
In this section, we use a training set of 64 runs per benchmark,

i.e., this means we have randomly selected 64 program transforma-
tions and apply them to each of the � � 6 � 6 � benchmarks to
build a predictor. As mentioned before, we repeat this process 30
times to be statistically meaningful. Also, we have set the number
of canonical transformations to 4. After training, these 4 canoni-
cal transformations are applied to the � th unseen program. The
reactions (speedups) to these canonical transformations, as well
as the transformation identifier, are used as inputs to the model,
along with the execution of the original, untransformed program.
The model is used to predict the speedup of all of the remaining
��������� � � transformation sequences of the unseen � th benchmark
(i.e., “leave one out”). Thus we have a training set of overall size
� ��� 6 � P � (644) to predict ��������� � � data points.

We compare our model against a naive predictor. The naive pre-
dictor simply finds the average performance of the training data (all
program-transformation pairs in the samples) and predicts that any
new point will be that value,i.e., the naive prediction is d �����

� ; � � � L � ���where � � is the real speedup of one of the transformations.
In order to describe the accuracy of the model, we use the Mean

absolute error defined as - ��������� � �
� ; � �
	�
� � �
� ���������� � � , where ��� is the real

speedup of one of the transformation points and �� � the predicted
value. Averaged over all ��������� � � transformations applied to
the unseen benchmark, this gives an overall average measure of
the error. As mentioned in Section 2, we have collected the actual
speedups for all benchmarks and all transformations allowing us to
calculate the MAE exactly.

Figure 7 shows the mean absolute error of our predictor for each
program, as well as the naive predictor. As can be seen, the over-
all mean error is 7.3% when using a reactions-based predictor. If
we compare this to the naive predictor, whose error is 15.8%, it
is twice as accurate. Since our model is trained on random sam-
ples, its accuracy can typically vary from one sample set to an-
other. For that reason, we have evaluated the standard deviation of
the mean absolute error over the 30 different trials used for evalu-
ating the models in Figure 7, see Section 4. The standard deviation
in this figure shows that the model accuracy is quite stable. In fact,
we note that by using the reactions-based approach, not only we
outperform other predictors we are considering here. We also get
significantly lower variances than by using the code feature-based
models. Our method is therefore much less sensitive to the specifics
of initialization or choices of training data.

While the average error and standard deviation over all program
transformations is a good indication of model accuracy, for practi-
cal usage, it is important to predict well the best performing trans-
formations most of the time. For that reason, we have evaluated
the model accuracy on (1) all transformations which bring more
than 5% speedup, and (2) the transformations within 5achievable
(according to the actual speedup). The results are reported in Fig-
ure 8 and are shown only for those benchmarks where we can ob-
tain over 5% speedup. Even though the error is slightly worse over
both transformations bringing more than 5% speedup (8.1% error)
and within 5% of max transformations (8.5% error) than over all
transformations (7.3%), the model is still fairly accurate on these
critical transformations, and again, it is significantly more accurate
than the naive predictor on the same transformations. Thus, our
method is a practical alternative for fast software exploration.

5.2 Features-Based approach
In this section, we compare the reactions-based approach against

the more standard features-based approach. Even though the reactions-
based approach significantly outperforms the features-based ap-
proach, feature selection for whole-programs is still in its infancy [1]
and future improvements in feature selection may improve its ac-
curacy. As a pragmatic starting point we generated many different
features used in other research [1], as listed in Table 6. As men-
tioned before, we collect these features after applying the program
transformations in SUIF, in order to capture the static impact of
transformations on static program characteristics.

For a fair comparison with reactions, we have trained the features-
based model on the same � � � P � samples as for the reactions
model. These results are reported in Figure 7, along with the re-
actions results. Features-based prediction not only performs worse
than reactions-based prediction, but it performs worse than the naive
predictor in many cases. Even though static features have proved
useful for tuning single program optimizations, such as unrolling,
and on small code constructs [26], performance modeling of whole
programs, even small ones, is a more difficult task. Nevertheless,
in future work, we hope to improve the static features definition to
better capture whole program behavior, and also to combine static
features and reactions in a hybrid approach.

In the remaining sections, we therefore focus our investigations
and experiments on the reactions approach.

5.3 Speeding up training: accuracy vs. train-
ing size

There is naturally a trade off between the number of training
runs and the accuracy of the model. The smaller the number of
runs, the faster the model is built, but potentially, the lower the
accuracy. To evaluate this trade off, Figure 10 shows prediction
accuracy against training set size (the number of training runs). As
mentioned before, the training runs are randomly selected among
the set of all possible program-transformation pairs except for the
target program.

Consider the bars corresponding to 4 canonical transformations
(the trend is similar for other values). The mean absolute error
is large, 13.4%, when allowing only 16 samples per benchmark to
build the predictor. However, starting at 32 samples per benchmark,
the model accuracy is good enough for practical usage (9.2%). It
reduces to just 7.3% when using 64 samples per benchmark. (We
note here that termination of training conditions do not depend on
the size of the training set.) Interestingly, the accuracy of the pre-
dictor does not increase significantly beyond this sample size; at
1024 samples per benchmark, it is almost the same as for 64 sam-
ples. This confirms the remark of Section 2 that there are only few
performance “plateaus” for each benchmark, and once all plateaus
have been covered by training samples, additional training is un-
necessary. This may also indicate the performance limits of the
considered predictive models.

Considering there are ��������� possible transformations per bench-
mark, and that we need no more than 64 samples per benchmark
to obtain a fairly accurate model, we can reduce transformation
space exploration to �

��� � �
th of its total size. Note that, once the

model is trained with a few benchmarks, then we only need to probe
new benchmarks with canonical transformations, speeding up ex-
ploration by several orders of magnitude. In fact, while we used
10 benchmarks for our training set in each experiment, it does not
mean the model cannot be used after training on a smaller (nor a
larger) number of benchmarks. In Figure 9, we have evaluated the
model accuracy when varying the number of training benchmarks
from 1 to 10. After training on two benchmarks, the model accu-
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Figure 7: Mean absolute error: Reactions, Features and Naive predictors. Averages over 30 trials, 64 training patterns per benchmark, except for
FEATURES(1024) which uses 1024 training patterns. 4 canonical transformations were applied for the reactions-based approach.
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64 training patterns per benchmark.
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Figure 9: Impact of number of training benchmarks, 64 training pat-
terns per benchmark.

racy is not much better than that of the naive predictor, however,
after training on 5 benchmarks, the error is down to 10.6%.

Throughout the article, we have used randomly selected training
runs. However, in practice, software engineers may decide to do
specific runs anyway; these runs can add to or even replace the
random training runs, to further improve the performance model.

5.4 Impact of canonical transformations

5.4.1 Number of canonical transformations vs. pre-
diction error

As stated earlier, the canonical transformations, which enable
program discrimination by focusing on the most meaningful reac-
tions for a given model/platform, are selected automatically. Fig-
ure 10 shows the impact of selecting 1 to 8 canonical transfor-
mations for the predictor. As expected, increasing the number of
canonical transformations generally improves the prediction accu-
racy across the various training sizes. Also, there is a limit (4)
beyond which increasing the number of canonical transformations

brings little benefit. We also note that models using 8 canoni-
cal transformations sometimes perform slightly worse than mod-
els with 4 transformations or less. This may indicate that some
of the extra features provide little additional information about the
underlying program. At the same time, these extra features may be
sensitive to the noise or systematic bias in training data, which may
potentially adversely affect performance on new programs. Nev-
ertheless, we can see that our reaction-based models significantly
outperform predictors (of similar complexity) which only use code
features – see Figure 7.

We also note that there are interesting effects when varying the
size of training data on accuracy of the predictions. We believe our
model may be “overfitting” to the training benchmarks, which may
inhibit the performance on new benchmarks. In the future we are
planning to formally investigate these effects for our approach to
learning.

Note however that, even with 1 reaction, the model already per-
forms quite well (consider the bar for 64 samples and 1 canonical
transformation). It turns out that, since our set of benchmarks is
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Figure 11: Mutual Information selection vs. random selection
of canonical transformations for reactions-based model, 64 training
patterns per benchmark.

much smaller than the set of possible transformations, it is easy
to find one transformation which almost fully discriminates bench-
marks. Still, some benchmarks, such as fir, significantly benefit
from 4 rather than 1 or 2 canonical transformations.

Finally, one can see that 32 samples/8 canonical transformations
performs about as well as 64 samples/2 canonical transformations.
So one can choose, depending on the experimental constraints, to
either minimize the training set or the number of probes.

5.4.2 Mutual Information selection vs. random se-
lection

In order to evaluate the benefit of the Mutual Information ap-
proach, we have compared it with a random selection of canonical
transformations, in Figure 11. We note that using mutual informa-
tion features is consistently better than using random features, and
sometimes significantly so. Note that a careful choice of canonical
transformations appears to be particularly important for difficult
benchmarks, i.e. those where the prediction errors are relatively
high for both code feature-based and reactions-based approaches
(e.g. fir, lmsfir, compress, histogram). From Figure 11,
we can also see that by using the mutual information (rather than
random) features, we get much lower variances of the prediction er-
rors. This difference in variances is consistent across all the bench-
marks, and is particularly large for the more complicated programs.

5.5 Modeling another architecture
Figure 12 shows the main accuracy results for another architec-

ture platform, a MIPS core described in Section 4. Note that the
average accuracy of our model is almost the same as the TI plat-
form. We also see that the naive predictor performs better, in large
part because the MIPS core (and the underlying compiler) is signif-
icantly simpler than the TI core (simple scalar versus large VLIW
processor).

Finally, since a significant number of transformations can have
a similar impact on different architecture platforms, we have ex-
plored whether we could apply on a new platform what was learned
on another platform. Figure 13 shows the accuracy of a model
trained on the MIPS, on 10 benchmarks (64 samples per bench-
mark, 4 canonical transformations), and used to predict perfor-
mance of the left out benchmark running on the TI platform. While
not as good as the native TI model, it still outperforms the naive
predictors.

6. RELATED WORK

6.1 Speeding up simulators and alternative ap-
proaches

Recently, there have been proposals to speed up simulation us-
ing sampling, e.g., SimPoint [25] and SMARTS [31]. Even more
recently, TurboSMARTS [29] could drastically reduce overall sim-
ulation time through a combination of sampling and checkpoint-
ing. These techniques are actually orthogonal and complementary
with our technique: by reducing the time necessary to perform one
run, they can reduce our training and characterization time. How-
ever, sampling techniques like SimPoint or SMARTS are ill-suited
for software design-space exploration because they require a sig-
nificant pre-processing effort for each benchmark (at least one full
functional simulation), so that, after any program transformation,
the whole pre-processing must be replayed, voiding part or all of
the speed benefits of sampling.

Karkhanis et al. [17] propose an analytical model for hardware
exploration that captures the key performance features of super-
scalar processors. This model can potentially be used for software
exploration, but the construction of the model is ad hoc and a com-
plex process, which makes it difficult to generalize and replicate.
Eeckhout et al. [10] use statistical simulation to similarly capture
processor characteristics, and generate synthetic traces that are later
run on a simplified superscalar simulator. After any program trans-
formation, a new trace needs to be generated if this approach were
to be used for software exploration, requiring a full functional sim-
ulation.

Recently Ipek [15] has proposed a distinct method for both con-
siderably speeding up and automating the hardware design-space
exploration process. The principle is to train an ANN (Artificial
Neural Network) to predict the impact of hardware parameter vari-
ations (e.g., cache size, memory latency, etc) on the performance
behavior of a target architecture. After training on less than 5%
of the design space, the model can still accurately predict perfor-
mance variations with less than 2% error. One model is built for
each benchmark, i.e., the model does not learn across benchmarks
as we do. Moreover, the approach is limited to hardware because
the model is specific to a program binary, just like the sampling
approaches. Therefore, any modification of the program binary,
such as applying a program transformation, requires training a new
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Figure 12: MIPS mean absolute error: Reactions and Naive predic-
tors, 64 training patterns per benchmark.
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Figure 13: Learning across architectures, using the reactions-based
model, 64 training patterns per benchmark.

model using several thousands simulations. As a result, the ap-
proach is not suitable for software exploration. Our approach simi-
larly relies on machine-learning to build a performance model, but
it can accommodate any program transformation without retrain-
ing.

Recently, IBM has highlighted the issue of software tuning early
on in the design cycle. For the Blue Gene/L, it was shown that an
approximate but fast performance model, as a replacement for more
detailed but slow simulators, can be very useful in practice [3]; still,
the approximate model proposed was designed manually and in an
ad-hoc manner.

6.2 Predicting the impact of program trans-
formations

Machine-learning has recently been investigated by a number of
researchers in the area of compiler optimization. The goal is usu-
ally to improve or replace one or more hand-tuned compiler heuris-
tics. Such machine learned heuristics attempt to predict a good
transformation, but do not predict their actual performance.

Stephenson et al. [27] used genetic programming to tune heuris-
tics for three compiler optimizations within the Trimaran’s IM-
PACT compiler: hyperblock selection, data prefetching and regis-
ter allocation. Cavazos et al. [7] describe using supervised learning
to control whether or not to apply instruction scheduling. Mon-
sifrot et al. [20] use a classifier based on decision tree learning to
determine which loops to unroll: they looked at the performance
of compiling Fortran programs from the SPEC benchmark suite
using g77 for two different architectures, an UltraSPARC and an
IA64. Stephenson et al. [26] use machine-learning to characterize
the best unroll loop factor for a given loop nest, and improve over
the ORC compiler heuristic. All of these approaches are successful
in automatically generating compiler heuristics for code segments
rather than in predicting the eventual performance of the selected
optimizations for whole programs.

Rather predicting the impact of a single transformation, others
have looked at searching [28, 12, 2, 8, 18, 21] for the best set or
sequence of optimizations for a particular program.

Almagor et al. [2] propose a number of algorithms to solve the
compilation phase ordering problem. Their techniques searche for
the best phase order of a particular program. Such approaches gives
impressive performance improvements, but has to be performed
each time a new application is compiled. In contrast, our mod-

els are constructed on a training set of programs and can then be
used to accurately predict transformations to “unseen” programs.

Cooper et al. [8] present a system called ACME which speeds
up the search of iterative compilation. ACME utilities a technique
called estimated virtual execution (EVE) which estimates changes
to the execution counts of basic blocks when an optimization that
changes the control flow graph (CFG) is applied. This technique
can then simply model the benefits and disadvantages of applying
optimizations by estimating all the changes to the CFG. EVE works
well for estimating code size or for estimating the performance of
simple processors, however we believe this method is too inaccur-
rate to model the performance of real machines. This technique
also requires substantial changes to a compiler to understand how
and to what extent its optimizations change the control flow graph.

Kulkarni et al. [18] introduce techniques to allow exhaustive
enumeration of all distinct function instances that would be pro-
duced from the different phase-orderings of 15 optimizations. This
exhaustive enumeration allowed them to construct probabilities of
enabling/disabling interactions between the different optimization
passes. Using these probabilities, they constructed a probabilistic
batch compiler that dynamically determined which optimization
should be applied next depending on which one had the highest
probability of being enabled. This method however does not con-
sider the benefits each optimization can potentially provide when
applied. In contrast, we train our models to obtain the impact of
optimizations applied, and therefore our technique learns which
optimizations are beneficial to apply to “unseen” programs with
similar characteristics. However, the techniques presented in this
work would allow a larger exploration of the optimization space
than we attempted. By exploring a larger part of the search space,
we would likely improve the data used for training our models.

Pan et al. [21] partitioned a program into tuning sections and
then developed fast techniques to find the best combination of opti-
mizations for each of these tuning section. They are able to reduce
the time to find good optimization settings from hours to minutes.
These techniques could also be beneficial during the training data
generation stage of our models. Specifically, the technique to test
different optimization settings on a tuning section during a single
run of the program would allow us to increase the number of opti-
mization settings we evaluate. This would also improve the quality
of the training data we used for our models.

Agakov et al. [1] build models of good transformation sequences



from training data on a per program basis. This is then used to guide
iterative search on a new program. Unlike this paper, they only
attempt to predict good transformations to apply rather than pre-
dicting the performance impact of any particular transformation.
Predicting performance is a significantly more difficult problem as
it requires the precise capture of architecture behavior.

In the area of predictive modelling, Zhao et al. use manually
constructed cost/benefit models to predict whether to apply PRE
or LICM [34]. They achieve 1% to 2% improvement over always
applying an optimization, but at a cost of greatly increasing com-
pilation time (by up to 68%). However, their models appear to be
quite complicated and have to be manually constructed. On the
other hand, our models are simple and automatically constructed
using machine learning.

Iterative optimization has also been employed in well-known li-
brary generators in such systems as FFTW [13], ATLAS [30], and
SPIRAL [23]. These systems obtain excellent performance on the
particular set of applications they tune, e.g., linear algebra libraries
or DSP codes, however they require a large amount of search every
time a new processor is targetted.

Yotov et al. [32] describe a model-based approach for optimiz-
ing BLAS libraries. They show that using a model-based approach
to evaluate the performance of an optimization can be as effective
as empirical evaluation. Epshteyn et al. [11] present a hybrid ap-
proach that uses this analytical model approach to quickly obtain
information about individual search points. The search points that
the model predicts will have the highest expected performance are
evaluated on the real machine and used to refine an empirical model
being constructed. The approach obtains performance comparable
to expensive empirical search techniques and significantly outper-
forms techniques based solely on analytic models. Yotov et al.[33]
present a technique of refining analytical models based on the re-
sults of empirical search. That is, the authors analyze the code and
optimization parameters found by ATLAS through its global search
and then make refinements to their analytical models. The authors
advocate the use of local neighborhood search around the points
suggested by the analytical model to further improve the solutions.
Results show the refined analytical models and models with local
search perform comparable to the global search strategy found in
ATLAS. However, the analytical models presented in these three
approaches are complicated and require extensive manual tuning.
In contrast, our models are automatically constructed and have the
potential to outperform hand-tuned models.

6.3 Program characterization for prediction
In order to predict the effect of a transformation on a given pro-

gram, the predictor is fed some characteristics of the target pro-
gram. Much of the prior work in machine learning based compi-
lation relies on program features-based characterization. For in-
stance, Monsifrot et al. [20], Stephenson et al. [26] and Agakov et
al. [1] all use static loop nest features. Features may capture those
characteristics of the static program that are best at predicting pro-
gram transformations to apply.

However, we have shown that features-based characterization
may not be well suited to the complex task of predicting whole
program performance and the impact of many different transfor-
mations. Triantafyllis et al. [28] bears some similarity with our
reactions-based characterization method. They augment the In-
tel Itanium compiler with the ability to iteratively search combi-
nations of compiler options across runs for a given program, and
they especially focus on the interactions among compiler options.
As part of their technique, they collect the good combinations of
compiler optimizations by noticing that how a program behaves for

one transformation can be an indication of how it would behave for
some other transformations. Our reaction characterization method
is based on a similar intuition, however they attempt to find appro-
priate optimizations, while we also attempt to estimate the asso-
ciated speedups and to scan the whole transformation space very
rapidly.

7. CONCLUSIONS AND FUTURE WORK
This article proposes a method for building a performance model

of a target machine which is accurate enough to estimate the speedup
of any known program transformation. One of the key assets of our
approach is that the model construction is entirely automatic; the
main construction cost is the training phase, though training runs
can be either randomly selected or resulting from past/useful ex-
periments. The performance model is based on characterizing pro-
grams by their reactions to a set of automatically selected canon-
ical transformations. This approach has been shown to accurately
capture the complex interplay between the program and the archi-
tecture.

Hybrid reactions+features approach. Even though the reactions-
based approach proved superior to the features-based approach, and
required only a few probing runs on the new target program, the
features-based approach still has the potential practical advantage
of not requiring any probing run of the new target program, since
the characterization is static. As a result, we intend to investigate
a combined reactions+features approach in order to achieve the ac-
curacy of the reactions approach with the practical advantages of
the features approach.

Extensions to other combined software+hardware predictions.
Our reactions approach makes no assumption on the nature of re-
actions. In this study, reactions are the impact of software trans-
formations on performance, but they could also be the impact of
hardware modifications on performance. As a result, we will ex-
tend our approach to combined software+hardware design-space
exploration by simultaneously studying software and hardware re-
actions.
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