
Autonomous Fault Detection in Self-Healing Systems:
Comparing Hidden Markov Models and Artificial Neural

Networks

Chris Schneider
University of St Andrews

School of Computer Science
Fife, Scotland

chris.schneider@
st-andrews.ac.uk

Adam Barker
University of St Andrews

School of Computer Science
Fife, Scotland

adam.barker@
st-andrews.ac.uk

Simon Dobson
University of St Andrews

School of Computer Science
Fife, Scotland

simon.dobson@
st-andrews.ac.uk

ABSTRACT
Autonomously detecting and recovering from faults is one
approach for reducing the operational complexity and costs
associated with managing computing environments. We pre-
sent a novel methodology for autonomously generating in-
vestigation leads that help identify systems faults. Specifi-
cally, when historical feature data is present, Hidden Markov
Models can be used to heuristically identify the root cause of
a fault in an unsupervised manner. This approach improves
the state of the art by allowing self-healing systems to detect
faults with greater autonomy than existing methodologies,
and thus further reduce operational costs.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Applications and Expert Sys-
tems; I.2.8 [Problem Solving, Control Methods, and
Search]: Heuristic methods—Plan execution, formation,
and generation

Keywords
self-healing systems; fault detection; machine learning; auto-
nomic computing; artificial neural networks, hidden markov
models;

1. INTRODUCTION
The operational costs of large-scale computing environ-

ments are continuing to increase. In order to address this
problem, self-managing systems are being developed that re-
duce the supervisory needs of computing environments. Self-
healing systems are one such example, and operate by au-
tonomously detecting then recovering from faults. Although
there have been numerous advances in both of these aspects,
most self-healing systems continue to require periodic hu-
man oversight [1, 2, 3, 4]. This constraint poses challenges

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright is held by the owner/author(s).

ADAPT ’14, Jan 22 2014, Vienna, Austria.
ACM 978-1-4503-2515-1/14/01.
http://dx.doi.org/10.1145/2553062.2553065.

for the continued reduction of costs, and restricts self-healing
recovery strategies to reactive approaches [5]. The impor-
tance of reducing human oversight in managing computing
environments is multi-faceted. Although numerous direct
benefits exist–such as the reduction staff involvement and
their associated operating costs–further achievements can
also be realised. Notably, self-healing systems have prop-
erties that are showing inherent benefits to change control
schemas, and preserving baseline configurations [6].

The lack of change control or a baseline configuration can
both introduce faults and present problems in determining
their respective sources. Additionally, self-healing systems
methodologies are also showing the capability to both detect
and resolve faults without human supervision [5, 7, 8]. This
is important when considering the costs and time require-
ments associated with training technical members of staff
necessary to achieve these same results. If a system can find
an appropriate recovery solution without the need for a sub-
ject matter expert, the associated costs can be immediately
recovered.

However, achieving these goals is non-trivial and has posed
notable challenges in both Machine Learning, and Artificial
Intelligence. There is no assurance, for example, that self-
healing systems leveraging evolutionary or search-space al-
gorithms will find an appropriate solution for a given fault,
or that any solution found will be optimal. Furthermore,
computational costs of approaches that leverage these meth-
odologies are typically higher than others, and impart a cer-
tain amount of risk of failing to identify or resolve faults.
Anecdotal evidence suggests that in professional computing
environments the failure to recognise or mitigate a fault is
never an acceptable state. It is clear, however, that such cir-
cumstances do happen under human supervision, and they
may be inevitable. The fact remains that moving to a soft-
ware based approach poses challenges and questions regard-
ing accountability–currently associated with human admini-
strators–and liability. Both of these topics are outside of the
scope of this paper, but the preference in supervised manage-
ment approaches lends evidence to the desirability of these
criteria [9, 10, 11, 12, 13, 14, 15, 16, 17]. The question re-
mains: How can we further the autonomous behaviours of
self-healing systems whilst reducing the operating costs of
large-scale computing environments?

Previous research has shown that it is possible to au-
tonomously synthesise new systems configurations [7], and
determine common relationships between features [18]. This



has helped to reactively build recovery solutions in an unsu-
pervised fashion and predict results of specific systems’ con-
figurations, respectively. The ability to autonomously iden-
tify anomalies has also been demonstrated by using a spe-
cial type of unsupervised artificial neural network (ANN) [5]
called a self-organising map [19]. This approach emphasises
predictive behaviours by leveraging historical configuration
data collected from a local system. However, at present
there are no performance evaluations of self-healing systems
utilising these methodologies. In order to understand how
effective these approaches are they must be compared.

In this paper we present a novel approach for autonomously
evaluating the source of a fault within a system by using
Hidden Markov Models (HMMs) to predict the state of a
feature. This approach is shown to be more effective than
using a simple artificial neural network (ANN), and can be
leveraged in a similar fashion to self-organising maps. Addi-
tionally, a comparison is provided between the performance
of both the HMM and the ANN. This is intended as a base-
line for future evaluations of the relative performance of self-
healing approaches. It is our intent to continue to develop
this research further and to eventually demonstrate poten-
tial reductions in the cost of operating large-scale IT envi-
ronments through automation.

The rest of this paper is organised as follows: Section 2
contains a detail of the approach. Sections 3 and 4 describe
the implementation, and key components of the methodol-
ogy, respectively. Section 5 presents some early experimental
results whilst Section 6 concludes with some directions for
future exploration.

2. APPROACH
Using HMMs it is possible to identify the source of faults

within a system without human intervention. HMMs use a
learning algorithm to evaluate and predict changes in feature
behaviour by utilising historical performance and configura-
tion data periodically gathered from the system. This data
is then autonomously classified through the use of fitness
tests as either valid or invalid. Results from these tests de-
termine the overall state of the system, and subsequently
categorise the data collected in an identical fashion. This
information is then used to provide direction to the HMM.

If the system passes all of its fitness tests, the associated
configuration is assumed to be valid. The feature data is
then converted into vectors based state changes and used to
train HMMs to recognise acceptable patterns in feature be-
haviour. As the system passes its fitness tests, the prediction
capabilities produced by the HMM become stronger. How-
ever, as systems behaviour can and is expected to change
over time, previously learned information is gradually ex-
pired. This allows for elasticity in predictions by limiting
the information learned to a recent time-series.

If the system does not pass all of its fitness tests, the
associated configuration is assumed to be invalid. Once an
invalid state has been determined an evaluation is done for
each feature’s behaviours based on the learned information.

Features that are determined to have behaved in an unex-
pected manner are added to a list of potential faults, along
with a confidence value. The confidence value is determined
by how unlikely the behaviour is to have occurred according
to the HMM. Using the confidence value, the list of poten-
tial faults is then sorted in descending order. This provides
both a measure of effectiveness of the application for deter-

mining the root cause of the fault, and an ability to prioritise
subsequent self-healing strategies.

3. IMPLEMENTATION
In order to achieve the aforementioned approach, this ex-

periment leverages C# and the Windows Management In-
strumentation (WMI) framework for data collection [20]. A
small application periodically interfaces with the WMI ser-
vice based on a polling interval. The polling interval deter-
mines two properties: How frequently the WMI framework
is to be queried, and how much elasticity to account for in
behavioural pattern analysis. Although both values are fully
adjustable, for the purposes of this experiment the polling
interval is set at 60 seconds, and the total size of the dataset
collection is limited to 30 samples. Each dataset is refer-
enced within a list, and contains a collection of tables that
individually correspond to a WMI class. As the WMI frame-
work is queried, these tables are populated, associated with
their respective dataset, and then categorised. Lastly, the
information to be gathered is determined at run-time via
a dictionary that stores a unique identifier value and the
names of the WMI classes to be queried.

The categorisation of dataset information is accomplished
via fitness tests that validate the responsibilities of the vir-
tual machine. In this case the virtual machine’s primary
purpose is to act a web-server for both internal and exter-
nal clients. Rather than using unit tests to verify a series
of specific properties, fitness tests emphasise the validation
of high-level processes and functions. This allows the ap-
plication rather than an administrator to find the specific
cause the anomaly. Furthermore, the use of fitness tests in
this experiment accomplishes three goals: 1.) It emulates
more closely the use of policies than unit tests–a goal for
self-managing systems described by prior research [21, 22,
23, 24], and 2.) It roughly mirrors standard practice in ex-
isting computing environments where operational readiness
testing or service-level agreements are required, and 3.) It
establishes the groundwork for feeding in the results of this
experiment with planned future research.

As previously stated, once a dataset is categorised as ei-
ther valid or invalid the application will either update its
predictive capabilities or it will look for anomalies, respec-
tively. The dataset is determined to be valid if it passes all of
its fitness tests. If this occurs, the each property within the
collection of datasets is evaluated against itself. The hard-
est part of this procedure is uniquely identifying the objects
that have been queried.

WMI does not provide a unique identifier for the values it
produces, so an intersection is used to identify like-objects
based on the lowest expected rate of change for a specific
value within a given WMI class. This value, identified by
column, is the primary reason for aforementioned WMI class
dictionary’s existence. After verifying that the application
has no more than the maximum number of datasets, any
changes–including removed or newly discovered properties–
are catalogued and a vector is produced that contains change
information. It is this vector that is used to autonomously
train the anomaly detection frameworks (ADFs) in this ex-
periment.

The ADFs in this experiment leverage one of two learn-
ing algorithms. The ADF’s that utilise an HMM leverage
the Baum-Welch algorithm [25, 26, 27]. This algorithm was
chosen due to its suitability with HMMs inherent forward–



Figure 1: Anomaly Detection Framework Logic & Architecture Diagram

backward learning, and was implemented via the AForge-
.NET [28] and Accord.NET Frameworks [29]. Conversely,
the ADFs that leverage ANNs utilise a naı̈ve Bayes ap-
proach. Each learning algorithm is responsible for process-
ing observed feature behaviours into probabilities, which
are used in conjunction with the ADF’s classification of the
datasets collected via WMI.

If the dataset is determined to be invalid, the feature’s be-
haviours are analysed by the ADFs for unexpected changes.
Any property that does not match the ADF’s predicted val-
ues is added to a list of potential faults, along with a confi-
dence value. As long as the fault source is collected within
the WMI data, and the feature behaviours are sufficiently
predictable, the root cause of a fault should be detected by
the ADF–determining what constitutes as sufficient it is one
of the primary goals of this experiment.

Although other learning algorithms are available, the com-
parison of their advantages and disadvantages comparing
them to these two approaches remain beyond the scope of
this experiment. This is primarily due to space and complex-
ity constraints, but this is an intended area that hopefully
will be explored in the future. Lastly, the underlying dif-
ferences between HMMs and ANNs are not fully explored
within this paper as we anticipate readers will be versed in
these topics.

4. METHODOLOGY
This experiment leveraged 2 virtual machines running Win-

dows 7, Internet Information Services (IIS) 7.5, and one of
two versions of the ADF. Each virtual machine was cloned
from a single initial image, and consisted of identical base
configurations in hardware.

The hardware itself was unremarkable being a standard im-
age with 1GB of RAM, and a single disk partition divided
into three volumes–one for the OS, the ADF, and the IIS we-
broot, respectively. The software was identical up until the
point at which the ADFs were allowed to run for a period
of 30 minutes on the machines.

During this time, the fitness tests were evaluated once ev-
ery 60 seconds. If a system passed all of its fitness tests,
each respective ADF would save both the configuration and
metric data it gathered along with an XML schema file to
a local data store. These files served as a mechanism for
loading known good systems configurations quickly and, as
a consequence, allowed for more rapid testing. Addition-
ally, by approaching the experiment in this fashion we were
able to reduced the opportunity for drift in each virtual ma-
chines’ configuration. Each machine, once trained, was in-
jected with either or a fault or a configuration change that
was expected to trigger a fault.

The ADFs were then responsible for detecting the pres-
ence of the fault and generating a potential root cause, as
well as reporting on several key attributes including: The to-
tal number of true positives, true negatives, false positives,
and false negatives, the time taken in “ElapsedTicks” from
the point in which a fault was detected until the completed
generation of the ordered list of potential root causes, and
the number of potential root causes (i.e., ‘leads’).

True and false positives were determined when a fault was
detected and whether or not it was or was not present, re-
spectively. Conversely. true and false negatives were deter-
mined when a fault was not detected. However, due to the
nature of false negatives, the number of faults not detected
by the application had to be done by hand. This was as
expected as there was no way, by definition, for the applica-
tion to detect such a state without external validation. It is
also the reason that faults in this experiment were injected



with the source already being known. From this information
inferential metrics such as precision, time-taken, and leads
generated. This data was then combined to produce charts
showing the performance of the ADFs relative to the same
tests.

The type of faults we injected had two variants: Adverse
Configuration Changes (ACCs), and Direct Fault Injections
(DFIs). The former consisted of shutting off services or mak-
ing changes to the system using normal administrative meth-
ods. These changes were made in such a way that were ex-
pected to intentionally generate faults. This included chang-
ing disk structures, service states, and other properties that
administrators would normally have access to. The latter
consisted of copying code directly into the address space of
another process, which in turn was expected to produce a
controlled crash.

The ACCs we instantiated included: Disabling the net-
work card, disabling the W3SVC service, removing the vol-
ume upon which the IIS webroot was contained, removing
all free space from any of the three volumes, and disabling
network access from one hop above the virtual machine’s
purview. The DFIs we instantiated included crashing vari-
ous services such as: The IIS 7.5 W3SVC service, the Win-
dows IPv4 network stack, and the Windows DNS service.
Each ACC or DFI was run 6 times on the same ADF using
5, 10, 15, 20, 25, and 30 configuration samples. This al-
lowed us to realise trends within each approach, and to see
differences in both output and ADF confidence during each
specific test.

The confidence values for each approach were generated
using different methodologies based on their respective learn-
ing algorithms. In the case of the HMM, the confidence value
was provided natively using the Baum–Welch algorithm.
However, the ANN’s use of simple vector analysis to esti-
mate the likelihood of a feature’s behaviour required setting
a minimum confidence value. This was done as there was no
reinforcement learning from which the approach could dy-
namically weight its expectations. As such, the ANN used a
Naive Bayes approach based on the last observed behaviour
in a known good state, less the probability of change for the
last number of up to 30 samples. Any features that were not
predicted to did not meet this 80% threshold were ignored.

Figure 2: The following graphs use a shared convention when
describing their data. Red and Blue lines represent data values
for the W3SVC DFI and ACC tests, respectively. Grey lines
represent averages for all conducted test results.

5. RESULTS
The successful evaluation of our experiment focused on

whether or not faults could be autonomously evaluated us-
ing HMMs, and if a subsequent root cause could be correctly
identified without human intervention. This approach was
contrasted by using a simple ANN to achieve the same re-
sults in order to establish a baseline for understanding the
effectiveness of this and future approaches. In summary, the
results of each ADF’s performance were mixed, but overall
show support for our hypothesis.

It is possible for both methodologies to reliably detect
faults and generate an accurately ordered list of potential
root causes. The HMM performed more quickly and with
greater accuracy then the simple ANN in nearly all circum-
stances. However, there were a few instances where the
ANN performed similarly to or better than the HMM. This
behaviour typically occurred much later in the observable
series of events. Thus, while our initial results indicate the
HMM is generally superior to a simple ANN, the supposition
that this is always the case is not entirely conclusive.

Figure 3: Time Taken represents the number of “ElapsedTicks”
between when a fault was detected and the return of an ordered
list of potential root causes based on confidence value.

The ability to determine the likelihood of a root cause
and the time needed to train each ADF can be seen in the
confidence and time taken graphs. Time taken represents
the number of “ElapsedTicks” used by the system once the
fault was detected, to the point where the list of potential
root causes and their respective confidence values were gen-
erated (Figure 3). This value was used as it automatically
accounts for CPU frequencies when performing timing cal-
culations as well as minor but important discrepancies in
how timing properties are measured in C#. This is not to
be confused with “Elapsed Ticks”, which are similar but do
not take into account this discrepancy. In every case, the
HMM was able to provide a list of potential root causes to
the faults in less time than the ANN.

Confidence illustrates how likely the ADF believes a given
lead is the root cause of a fault (Figure 4). In this case,
the most likely root causes selected by the HMM and ANN
approaches, respectively, were organised at the top of the list
of faults. However, there was no assurance or guarantee that
the ADF would select or provide a high degree of confidence
for any of the tests that were run. The values in this chart
illustrate the confidence values that were associated with the
leads at the top of the sorted list, regardless of correctness.
In addition to the the HMM taking less time to produce a



Figure 4: Confidence is a value used to convey how likely the
ADF’s suspect a given lead is associated with the root cause of
the detected fault. In this case, the highest confidence values
within the list are displayed which illustrates the learning rate of
each approach.

list of potential faults than the ANN, the HMM identified
more leads with greater confidence. Although this was the
expected result, the supporting data did not match our exact
expectations.

When the fault was introduced to the system via DFI, the
ANN predicted the problem with greater confidence. Upon
further investigation it seems that this is likely due to the
fact that ACCs generate more changes to the systems con-
figuration data than DFIs. This provides a greater number
of leads for each ADF to investigate, but does not provide
any kind of differentiation within the data itself. Since all
changes associated with the fault are equally weighted diag-
nosing ACC generated faults are more challenging. Regard-
less, when attempting to ascertain the root cause the HMM
was still able to identify the correct feature regardless of ex-
cess information. This is seen readily in the fault position
results.

Figure 5: The position of the correct fault by ADF is represented
in this graph. Notably, at 15 and 30 samples there are notable
improvements in each approach.

Fault position describes where the correct root cause of a
given fault exists in the ordered list (Figure 5). This is a
human generated metric based on knowing the cause of the
fault, a priori, and monitoring the effects of either a DFI or
ACC. The lower the value, the more correct the diagnosis
made by the ADF. This information, combined with the
number of leads, illustrates how likely an ADF was to select

the correct root cause of a fault and how many potential
avenues for investigation were generated, respectively.

The combination of both higher confidence values, and a
greater likelihood to pick the correct root cause when us-
ing an HMM may be due to the rate at which the HMM
generates its confidence values. The HMM’s use of forward–
backward learning via the Baum–Welch algorithm allows it
to inferentially predict patterns within its learned data. The
ANN is at a disadvantage in this respect because it antici-
pates a certain amount of information before making a pre-
diction. Although, theoretically, this should even out as
more information is provided to the ANN.

Figure 6: Each ADF is responsible for generating leads when
a fault is detected. This graph represents the total number of
suspect features by each approach, and their respective averages.

Converse to fault position, the number of leads is an au-
tonomously generated metric that represents the total num-
ber of features that the ADF inferred as being a potential
root cause in a detected fault (Figure 6). In both the HMM
and ANN’s, changes in a feature’s behaviour alone were
not enough to trigger an addition to the list of leads. The
changes had to cross a certain threshold before they were de-
termined to be ‘unexpected’. This is where the differences in
the learning algorithms are most obvious. The HMM is ca-
pable of setting a dynamic threshold for feature behaviours,
where as the ANN must use a statically assigned 80% confi-
dence value. The result was that the HMM generated more
leads when compared to the ANN.

Although more leads can indicate greater sensitivity in
detecting faults, higher values in this instance are not always
better. In a perfect scenario only the exact root cause(s)
should be provided. Interestingly, ADFs using HMMs were
also more likely to select the correct root cause. Although
the former is a strong indicator of the HMMs performance
as being more the desirable than the ANN, the generation
of larger numbers of leads is perhaps not.

In some cases the faults were not correctly positioned
within the list–particularly when the ADF leveraged an HMM.
This was due to second order sorting problems where the
HMM had equally weighted two possibilities but the list had
ordered the leads alphabetically. By having a greater num-
ber of leads, the HMM was not able to differentiate which
feature was more relevant, though often they were related.
For example, when the IIS web service were disabled us-
ing the ACC approach, 4 properties would be returned that
were all correctly associated with the change. Because these
properties were equally weighted, it pushed the correct lead



further down the list. One improvement might be to asso-
ciate the root attributes of a lead and then list properties
in a hierarchy. This would allow the root cause to be di-
agnosed as a subset of a specific feature and may lead to
greater precision in future approaches.

This result seems to highlight an important discovery–
that sorting the potential cause of faults based on a hierarchy
may be a useful way determine or reinforce confidence.

Figure 7: Correctly diagnosing the source of a fault is chiefly rep-
resented in the Precision metric. It illustrates where the correct
source of the fault is in the already ordered list of leads. The
higher the value on this chart, the fewer false leads generated by
the ADF.

Precision is metric that represents the number of correct
leads over the total leads generated by the ADF (Figure
7). Having only leads that were correctly associated with
the fault showed higher precision. In the case of the HMM,
most leads were categorised with a greater degree of pre-
cision than the ANN. However, as the number of samples
increased this position reversed itself and the ANN showed
greater precision than the HMM. This seems an obvious re-
sult as the number of root causes suspected by each respec-
tive approach changed in number. However, based on the
number of samples it would appear that this metric is best
served at about half of the expected number of values.

When this experiment was first developed, the expectation
was that a greater number of configuration samples would
yield more precise results. In reality it appears to be that
precision increases at about half of the expected number
of samples. It’d be worth exploring a larger sample size
of systems’ configurations to see if either ADF’s precision
values continue to peak at 15 samples, or if there is a trend
towards 2

x
, where x is the number of samples the ADF had

access to when the fault was detected. A confirmation of this
result could yield novel approaches for predicting elasticity
metrics within large–scale computing environments–a major
factor in operational costs.

Similarly, improvements in notification of faults within
large-scale computing environments may be possible where
virtual machines are leveraged. In cloud computing environ-
ment, for example, it is often–but not always–the case that
systems leverage the same baseline configuration[30]. As
such, the use of the demonstrated fault detection method-
ologies could be used in a number of fashions including root–
cause aggregation, and exploration of feature modelling via
stationarity[31]. Both are topics that are beyond the imme-
diate scope of this paper, but could be further explored.

Lastly, there were a few other notable differences in the
data which we had not anticipated. The training rate of
the HMM was faster than expected. This is most clearly
illustrated in the differences between the confidence values
between the HMM and the ANN. The differences in training
rate led to some missed opportunities for additional testing,
but a quick exploratory analysis reveals the HMM is capable
of generating confidence values greater than 90% within as
few as three samples. Whether or not the predictions made
using these values would be correct, however, has not been
examined.

6. CONCLUSION
In this experiment we successfully demonstrated that com-

bining fitness functions and HMMs can autonomously detect
faults and provide a list of their potential root causes. We
compared this approach with a simple ANN, and helped
to establish a baseline for further comparisons within the
field. However, although the results from our experience
were positive, we have not been able to demonstrate that
these approaches would result in reduced operating costs
for large-scale computing environments.

In addition to the improvements mentioned in the results
section, the field would benefit greatly by a live study. Anec-
dotal evidence suggests that most if not all of the aforemen-
tioned algorithms that are capable of detecting faults would
do so faster than human counterparts. However, there is
limited evidence to support this supposition and it should
be further explored.

More sophisticated approaches should be compared to bet-
ter understand the advantages and disadvantages of certain
technologies. The direct comparison of this approach with a
SOM would possibly yield a better understanding of un-
supervised approaches, collectively. Similarly, comparing
methodologies that require human administration to those
that do not may provide an avenue for understanding their
relative advantages and disadvantages.

Using fitness functions we were able to presume that some
faults effecting the areas of the system the fitness functions
were monitoring were likely to be detected. As such, no
specific model needed to be provided nor observed to as-
certain faults–the ADFs built their own expectations of the
features’ behaviours so long as the fitness tests continued to
pass. This approach, combined with the expiration of old
data, was intended to allow for the systems to account for
changes in behaviour and incorporate some native elasticity.
It would be interesting to see further exploration into this
area of study–particularly on the dynamic development of
fitness tests through self–provisioning (i.e., self-configuring)
systems.

Lastly, although we were limited to predicting a single
point within the feature behaviour, it may be possible to
observe sequences of behaviour for more predictive monitor-
ing. This would require using a different learning method-
ology such as the Viterbi algorithm [32], but it should be
compatible with the approach described in this paper.

Acknowledgments
We would like to thank Saleem Bhatti and César Roberto de
Souza for their help. Funding for this research was provided
by the Scottish Informatics and Computer Science Alliance.



7. REFERENCES
[1] C. Schneider, A. Barker, and S. Dobson, “A survey of

self-healing systems frameworks,” in Software Practice
and Experience. Wiley, 2013.

[2] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey,
“Fulfilling the vision of autonomic computing,” IEEE
Computer, vol. 43, no. 1, pp. 35–41, January 2010.

[3] H. Psaier and S. Dustdar, “A survey on self-healing
systems: approaches and systems,” Computing, vol.
91, Issue: 1, pp. 43–73, 2010.

[4] J. McCann and M. Huebscher, “Evaluation issues in
autonomic computing,” in Grid and Cooperatve
Computing - GCC 2004 Workshops. Springer Berlin,
2004, vol. 3252, pp. 597–608.

[5] D. J. Dean, H. Nguyen, and X. Gu, “Ubl:
Unsupervised behavior learning for predicting
performance anomalies in virtualized cloud systems,”
in Proceedings of the 9th international conference on
Autonomic computing, ser. ICAC ’12. New York, NY,
USA: ACM, 2012, pp. 181–190. [Online]. Available:
http://doi.acm.org/10.1145/2371536.2371571

[6] D. Miorandi, D. Lowe, and L. Yamamoto, “Embryonic
models for self–healing distributed services,” in
Bioinspired Models of Network, Information, and
Computing Systems, ser. Lecture Notes of the
Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering. Springer
Berlin Heidelberg, 2010, vol. 39, pp. 152–166.

[7] A. J. Ramirez, D. B. Knoester, B. H. Cheng, and
P. K. Mckinley, “Plato: a genetic algorithm approach
to run-time reconfiguration in autonomic computing
systems,” Cluster Computing, vol. 14, no. 3, pp.
229–244, Sep. 2011.

[8] O. Shehory, A Self-healing Approach to Designing and
Deploying Complex, Distributed and Concurrent
Software Systems, ser. Lecture Notes in Computer
Science. Springer-Verlag, 2007, vol. 4411, pp. 3–13.

[9] M. Aldinucci, M. Danelutto, G. Zoppi, and
P. Kilpatrick, “Advances in autonomic components
and services,” in From Grids to Service and Pervasive
Computing, T. Priol and M. Vanneschi, Eds.
Springer US, 2008, pp. 3–17.

[10] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci,
F. Lo Presti, and R. Mirandola, “Moses: A framework
for qos driven runtime adaptation of service-oriented
systems,” IEEE Transactions on Software Engineering,
vol. PP, no. 99, pp. 1–23, 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5963694

[11] S.-W. Cheng, D. Garlan, and B. Schmerl,
“Architecture-based self-adaptation in the presence of
multiple objectives,” in ICSE 2006 Workshop on
Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). Shanghai, China: ACM, 2006,
pp. 2–8, new York, NY.

[12] G. Li, L. Liao, D. Song, J. Wang, F. Sun, and
G. Liang, “A self-healing framework for qos-aware web
service composition via case-based reasoning,” in Web
Technologies and Applications, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013,
vol. 7808, pp. 654–661.

[13] D. Menasce, H. Gomaa, S. Malek, and J. Sousa,

“Sassy: A framework for self-architecting
service-oriented systems,” Software, IEEE, vol. 28,
no. 6, pp. 78–85, 2011.

[14] H. Naccache, G. Gannod, and K. Gary, “A self-healing
web server using differentiated services,” in
Service-Oriented Computing – ICSOC 2006, ser.
Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2006, vol. 4294, pp. 203–214.

[15] L. Rilling, “Vigne: Towards a self-healing grid
operating system,” in Euro-Par 2006 Parallel
Processing, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2006, vol. 4128, pp.
437–447.

[16] C. Schuler, R. Weber, H. Schuldt, and H. j. Schek,
“Scalable peer-to-peer process management - the osiris
approach,” in In: Proceedings of the 2 nd International
Conference on Web Services (ICWS’2004). San
Diego, CA: IEEE Computer Society, 2004, pp. 26–34,
washington DC, USA.

[17] N. Stojnic and H. Schuldt, “Osiris-sr: A safety ring for
self-healing distributed composite service execution,”
in Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), 2012 ICSE
Workshop on. Zürich, Switzerland: ACM, 2012, pp.
21–26, new York, NY.

[18] B. Garvin, M. Cohen, and M. Dwyer, “Failure
avoidance in configurable systems through feature
locality,” vol. 7740, pp. 266–296, 2013. [Online].
Available:
http://dx.doi.org/10.1007/978-3-642-36249-10

[19] T. Kohonen, “The self-organizing map,” Proceedings of
the IEEE, vol. 78, no. 9, pp. 1464–1480, 1990.

[20] “Windows management instrumentation,” Microsoft
Corporation, http://msdn.microsoft.com/en-
us/library/aa384642(v=vs.85).aspx, Tech. Rep., 10
2013.

[21] D. M. Chess, V. Kumar, A. Segal, and I. Whalley,
“Work in progress: Availability-aware
self-configuration in autonomic systems,” in Utility
Computing, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2004, vol. 3278, pp.
257–258.

[22] J. O. Kephart, “Autonomic computing: The first
decade,” in International Conference on Autonomic
Computing. Karlsruhe, Germany: ACM
SIGARCH/USENIX, 2011, pp. 1–56, new York, NY.

[23] J. O. Kephart and D. M. Chess, “The vision of
autonomic computing,” Computer, vol. 36, Issue: 1,
pp. 41–50, 2003.

[24] J. O. Kephart and W. E. Walsh, “An artificial
intelligence perspective on autonomic computing
policies.” Yorktown Heights, NY, USA: IEEE
Computer Society, June 2004, pp. 3–12, washington,
DC, USA.

[25] L. Baum and T. Petrie, “A maximization technique
occurring in the statistical analysis of probabilistic
functions of markov chains,” The Annals of
Mathematical Statistics, vol. 41, no. 1, pp. 164–71,
1970.

[26] ——, “An inequality with applications to statistical
estimation for probabilistic functions of markov
processes and to a model for ecology,” Bulletin of the



American Mathematical Society, vol. 73, no. 3, pp.
360–3, 1967.

[27] ——, “Statistical inference for probabilistic functions
of finite state markov chains,” The Annals of
Mathematical Statistics, vol. 37, no. 6, pp. 1554–63,
1966.

[28] A. Kirillov, “Aforge.net framework,”
http://www.aforgenet.com/framework/members.html,
2013.

[29] C. R. Souza, “Accord.net framework,” 2013,
http://accord-framework.net/.

[30] G. Kirby, A. Dearle, A. Macdonald, and A. Fernandes,
“An approach to ad hoc cloud computing,” ArXiv.org,
2010, http://arxiv.org/pdf/1002.4738.pdf.

[31] W. Jiandong, T. Chen, and B. Huang, “Fir modelling
for errors-in-variables/closed-loop systems by
exploiting cyclo-stationarity,” in International Journal
of Adaptive Control and Signal Processing. John
Wiley Sons, Ltd., 2007, vol. 27, no. 7, pp. 603–622,
http://dx.doi.org/10.1002/acs.948.

[32] V. A. J., “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,” in IEEE
Transactions on Information Theory 13. IEEE
Information Theory Society, 1967, vol. 13, pp.
260–269.


