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Abstract—Empirical auto-tuning and machine learning
techniques have been showing high potential to improve
execution time, power consumption, code size, reliability and
other important metrics of various applications for more than
two decades. However, they are still far from widespread
production use due to lack of native support for auto-tuning in
an ever changing and complex software and hardware stack,
large and multi-dimensional optimization spaces, excessively
long exploration times, and lack of unified mechanisms for
preserving and sharing of optimization knowledge and research
material.

We present a possible collaborative approach to solve
above problems using Collective Mind knowledge management
system. In contrast with previous cTuning framework, this
modular infrastructure allows to preserve and share through
the Internet the whole auto-tuning setups with all related
artifacts and their software and hardware dependencies besides
just performance data. It also allows to gradually structure,
systematize and describe all available research material including
tools, benchmarks, data sets, search strategies and machine
learning models. Researchers can take advantage of shared
components and data with extensible meta-description to quickly
and collaboratively validate and improve existing auto-tuning and
benchmarking techniques or prototype new ones. The community
can now gradually learn and improve complex behavior of all
existing computer systems while exposing behavior anomalies
or model mispredictions to an interdisciplinary community in
a reproducible way for further analysis. We present several
practical, collaborative and model-driven auto-tuning scenarios.
We also decided to release all material at c-mind.org/repo to set
up an example for a collaborative and reproducible research as
well as our new publication model in computer engineering where
experimental results are continuously shared and validated by the
community.

Keywords—high performance computing, systematic auto-tuning,
systematic benchmarking, big data driven optimization, modeling
of computer behavior, performance prediction, collaborative
knowledge management, public repository of knowledge, NoSQL
repository, code and data sharing, specification sharing,
collaborative experimentation, machine learning, data mining,
multi-objective optimization, model driven optimization, agile
development, plugin-based tuning, performance regression buildbot,
open access publication model, reproducible research

I. INTRODUCTION AND RELATED WORK

Computer systems’ users are always eager to have faster,
smaller, cheaper, more reliable and power efficient computer
systems either to improve their every day tasks and quality
of life or to continue innovation in science and technology.
However, designing and optimizing such systems is becoming
excessively time consuming, costly and error prone due to
an enormous number of available design and optimization
choices and complex interactions between all software and
hardware components. Furthermore, multiple characteristics
have to be carefully balanced including execution time, code
size, compilation time, power consumption and reliability
using a growing number of incompatible tools and techniques
with many ad-hoc, intuition based heuristics.

At the same time, development methodology for computer
systems has hardly changed in the past decades: hardware is
first designed and then the compiler is tuned for the new
architecture using some ad-hoc benchmarks and heuristics.
As a result, nearly peak performance of the new systems is
often achieved only for a few previously optimized and not
necessarily representative benchmarks while leaving most of
the real user applications severely underperforming. Therefore,
users are often forced to resort to a tedious and often
non-systematic optimization of their programs for each new
architecture. This, in turn, leads to an enormous waste of
time, expensive computing resources and energy, dramatically
increases development costs and time-to-market for new
products and slows down innovation [1], [2], [3], [4].

Various off-line and on-line auto-tuning techniques together
with run-time adaptation and split compilation have been
introduced during the past two decades to address some of
the above problems and help users automatically improve
performance, power consumption and other characteristics of
their applications. These approaches treat rapidly evolving
computer system as a black box and explore program and
architecture design and optimization spaces empirically [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20].

Since empirical auto-tuning was conceptually simple and
did not require deep user knowledge about programs and
computer systems, it quickly gained popularity. At the
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Fig. 1. Rising number of optimization dimensions in GCC in the past
12 years (boolean or parametric flags). Obtained by automatically
parsing GCC manual pages, therefore small variation is possible
(script was kindly shared by Yuriy Kashnikov).

1 

2 

3 

4 

0 10 20 30 40 50 60 70 

Sp
ee

d
u

p
  v

s 
 -

O
3

 

Distinct combination of  compiler optimizations 

0 

5 

10 

15 

0 10 20 30 40 50 60 70 

N
u

m
b

er
 o

f 
 

b
en

ch
m

a
rk

s 

Fig. 2. Number of distinct combinations of compiler optimizations
for GCC 4.7.2 with a maximum achievable execution time speedup
over -O3 optimization level on Intel Xeon E5520 platform across
285 shared Collective Mind benchmarks after 5000 random iterations
(top graph) together with a number of benchmarks where these
combinations achieve more than 10% speedup (bottom graph).

same time, users immediately faced a fundamental problem:
a continuously growing number of available design and
optimization choices makes it impossible to exhaustively
explore the whole optimization space. For example, Figure 1
shows a continuously rising number of available boolean and
parametric optimizations available in a popular, production,
open-source compiler GCC used in practically all Linux and
Android based systems. Furthermore, there is no more single
combination of flags such as -O3 or -Ofast that could deliver
the best execution time across all user programs. Figure 2
demonstrates 79 distinct combinations of optimizations for
GCC 4.7.2 that improve execution time across 285 benchmarks
with just one data set over -O3 on Intel Xeon E5520
based platform after 5000 explored solutions using traditional
iterative compilation [21] (random selection of compiler
optimization flags and parameters).

Optimization space explodes even further when considering
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Fig. 3. Execution time of a matrix-matrix multiply kernel when
executed on CPU (Intel E6600) and on GPU (NVIDIA 8600 GTS)
depending on the size N of square matrix as a motivation for online
tuning and adaptive scheduling on heterogeneous architectures [22].

heterogeneous architectures, multiple data sets and fine grain
program transformations and parameters including tiling,
unrolling, inlining, padding, prefetching, number of threads,
processor frequency and MPI communication [11], [23], [24],
[21], [25], [26]. For example, Figure 3 shows execution time
of a matrix-matrix multiplication kernel for square matrices on
CPU (Intel E6600) and GPU (NVIDIA 8600 GTS), depending
on their size. It motivates the need for adaptive scheduling
since it may be beneficial either to run kernel on CPU or GPU
depending on data set parameters (to amortize the cost of data
transfers to GPU). However, as we show in [22], [27], [28],
the final decision tree is architecture and kernel dependent
and requires both off-line kernel cloning and some on-line,
automatic and ad-hoc modeling of application behavior.

Machine learning techniques (predictive modeling and
classification) have been gradually introduced during the past
decade as an attempt to address the above problems [29],
[30], [31], [32], [33], [34], [35], [36], [22], [37]. These
techniques can help speed up program and architecture
analysis, optimization and co-design by narrowing down
regions in large optimization spaces with the most likely
highest speedup. They usually use prior training similar to
Figure 2 in case of compiler tuning and predict optimizations
for previously unseen programs based on some code, data set
and system features.

During the MILEPOST project in 2006-2009, we made
the first practical attempt to move auto-tuning and machine
learning to production compilers including GCC by combining
a plugin-based compiler framework [38] and a public
repository of experimental results (cTuning.org). This approach
allowed to substitute and automatically learn default
compiler optimization heuristics by crowdsourcing auto-tuning
(processing a large amount of performance statistics collected
from many users to classify application and build predictive
models) [39], [21], [40]. However, this project exposed even
more fundamental challenges including:
• Lack of common, large and diverse benchmarks and data

sets needed to build statistically meaningful predictive
models;
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• Lack of common experimental methodology and unified
ways to preserve, systematize and share our growing
optimization knowledge and research material including
benchmarks, data sets, tools, tuning plugins, predictive
models and optimization results;

• Problem with continuously changing, “black box”
and complex software and hardware stack with
many hardwired and hidden optimization choices and
heuristics not well suited for auto-tuning and machine
learning;

• Difficulty to reproduce performance results from the
cTuning.org database submitted by users due to a lack
of full software and hardware dependencies;

• Difficulty to validate related auto-tuning and machine
learning techniques from existing publications due to
a lack of culture of sharing research artifacts with
full experiment specifications along with publications in
computer engineering.

As a result, we spent a considerable amount of our
“research” time on re-engineering existing tools or developing
new ones to support auto-tuning and learning. At the same
time, we were trying to somehow assemble large and diverse
experimental sets to make our research and experimentation
on machine learning and data mining statistically meaningful.
We spent even more time when struggling to reproduce
existing machine learning-based optimization techniques from
numerous publications.

Worse, when we were ready to deliver auto-tuning solutions
at the end of such tedious developments, experimentation
and validation, we were already receiving new versions of
compilers, third-party tools, libraries, operating systems and
architectures. As a consequence, our developments and results
were already potentially outdated even before being released
while optimization problems considerably evolved.

We believe that these are major reasons why so many
promising research techniques, tools and data sets for
auto-tuning and machine learning in computer engineering
have a life span of a PhD project, grant funding or publication
preparation, and often vanish shortly after. Furthermore, we
witness diminishing attractiveness of computer engineering
often seen by students as “hacking” rather than systematic
science. Some of the recent long-term research visions
acknowledge these problems for computer engineering and
many research groups search for “holy grail” auto-tuning
solutions but no widely adopted solution has been found
yet [2], [3].

In this paper, we describe the first, to our knowledge,
alternative, orthogonal, community-based and big-data driven
approach to address above problems. It may help make
auto-tuning a mainstream technology based on our practical
experience in the MILEPOST, cTuning and Auto-tune
projects, industrial usage of our frameworks and community
feedback. Our main contribution is a collaborative knowledge
management framework for computer engineering called
Collective Mind (or cM for short) that brings interdisciplinary
researchers and developers together to organize, systematize,
share and validate already available or new tools, techniques
and data in a unified format with gradually exposed actions

and meta-information required for auto-tuning and learning
(optimization choices, features and tuning characteristics).

Our approach should allow to collaboratively prototype,
evaluate and improve various auto-tuning techniques while
reusing all shared artifacts just like LEGOTMpieces and
applying machine learning and data mining techniques to
find meaningful relations between all shared material. It
can also help crowdsource long tuning and learning process
including classification and model building among many
participants while using Collective Mind as a performance
tracking buildbot. At the same time, any unexpected program
behavior or model mispredictions can now be exposed to the
community through unified cM web-services for collaborative
analysis, explanation and solving. This, in turn, enables
reproducibility of experimental results naturally and as a
side effect rather than being enforced - interdisciplinary
community needs to gradually find and add missing software
and hardware dependencies to the Collective Mind (fixing
processor frequency, pinning code to specific cores to avoid
contentions) or improve analysis and predictive models
(statistical normality tests for multiple experiments) whenever
abnormal behavior is detected.

We hope that our approach will eventually help the
community collaboratively evaluate and derive the most
effective auto-tuning and learning strategies. It should also
eventually help the community collaboratively learn complex
behavior of all existing computer systems using top-down
methodology originating from physics. At the same time,
continuously collected and systematized knowledge (“big
data”) should help us make more scientifically motivated
advice about how to improve design and optimization of the
future computer systems (particularly on our way towards
extreme scale computing). Finally, we believe that it can
naturally make computer engineering a systematic science
while supporting Vinton G. Cerf’s recent vision [41].

This paper is organized as follows: the current section
provides motivation for our approach and related work.
It is followed by Section II presenting possible solution
to collaboratively systematize and unify our knowledge
about program optimization and auto-tuning using public
Collective Mind framework and repository. Section III
presents mathematical formalization of auto-tuning techniques.
Section IV demonstrates how our collaborative approach can
be combined with several existing plugin-based auto-tuning
infrastructures including MILEPOST GCC [40], OpenME [42]
and Periscope Tuning Framework (PTF) [26] to start
systematizing and making practical various auto-tuning
scenarios from our industrial partners including continuous
benchmarking and comparison of compilers, validation of
new hardware designs, crowdsourcing of program optimization
using commodity mobile phones and tablets, automatic
modeling of application behavior, model driven optimization
and adaptive scheduling. It is followed by a section on
reproducibility of experimental results in our approach
together with a new publication model proposal where all
research material is continuously shared and validated by the
community. The last section includes conclusions and future
work directions.
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II. CLEANING UP RESEARCH AND EXPERIMENTAL MESS
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Fig. 4. Converting (a) continuously evolving, ad-hoc, hardwired and
difficult to maintain experimental setups to (b) interconnected cM
modules (tool wrappers) with unified, dictionary-based inputs and
outputs, data meta-description, and gradually exposed characteristics,
tuning choices, features and a system state.

Based on our long experience with auto-tuning and
machine learning in both academia and industry, we now
strongly believe that the missing piece of the puzzle
to make these techniques practical is to enable sharing
systematization, and reuse of all available optimization
knowledge and experience from the community. However, our
first attempt to crowdsource auto-tuning and machine learning
using cTuning plugin-based framework and MySQL-based
repository (cTuning) [40], [43] suffered from many orthogonal
engineering issues. For example, we had to spend considerable
effort to develop and continuously update ad-hoc research and
experimental scenarios using many hardwired scripts and tools
while being able to expose only a few dimensions, monitor a
few characteristics and extract a few features. At the same
time, we struggled with collection, processing and storing of
a growing amount of experimental data in many different
formats as conceptually shown in Figure 4a. Furthermore,
adding a new version of a compiler or comparing multiple
compilers at the same time required complex manipulations
with numerous environment variables.

Eventually, all these problems motivated the development
of a modular Collective Mind framework and NoSQL
heterogeneous repository [42], [44] to unify and preserve
the whole experimental setups with all related artifacts and
dependencies. First of all, to avoid invoking ad-hoc tools
directly, we introduced cM modules which serve as wrappers
around them to be able to transparently set up all necessary
environment variables and validate all software and hardware
dependencies before eventually calling these tools. Such an
approach allows easy co-existence of multiple versions of
tools and libraries while protecting experimental setups from
continuous changes in the system. Furthermore, cM modules
can now transparently monitor and unify all information flow
in the system. For example, we currently monitor tools’

command line together with their input and output files
to expose measured characteristics (behavior of computer
systems), optimization and tuning choices, program, data set
and architecture features, and a system state used in all
our existing auto-tuning and machine learning scenarios as
conceptually shown in Figure 4b.

Since researchers are often eager to quickly prototype
their research ideas rather than sink in low-language
implementations, complex APIs and data structures that may
change over time, we decided to use a researcher friendly and
portable Python language as the main language in Collective
Mind (though we also provide possibility to use any other
language for writing modules through an OpenME interface
described later in this paper in Section IV). Therefore, it is
possible to run minimal cM on practically any Linux and
Windows computer supporting Python. An additional benefit
of using Python is a growing collection of useful packages for
data management, mining and machine learning.

We also decided to switch from traditional TXT, CSV
and XML formats used in the first cTuning framework to a
schema-free JSON data format [45] for all module inputs,
outputs and meta-description. JSON is a popular, human
readable and open standard format that represent data objects
as attribute − value pairs. It is now backed up by many
companies, supported by most of the recent languages and
powerful search engines [46], and can be immediately used
for web services and P2P communication during collaborative
research and experimentation. Only when the format of data
becomes stable or a research technique is validated, the
community can provide data specification as will be described
later in this paper.

At the same time, we noticed that we can apply exactly
the same concept of cM modules to systematize and describe
any research and development material (code and data) while
making sure that it can be easily found, reused and exposed to
the Web. Researchers and developers can now categorize any
collections of their files and directories by assigning an existing
or adding a new cM module and moving their material to a new
directory with a unique ID (UID) and an optional alias. Thus
we can now abstract an access to highly heterogeneous and
evolving material by gradually adding possible data actions and
meta-description required for user’s research and development.
For example, all cM modules have common actions to manage
their data in a unified way similar to any repository such
as add, list, view, copy, move and search. In addition, module
code.source abstracts access to programs and has an individual
action build to compile a given program. In fact, all current
cM functionality is implemented as interconnected modules
including kernel, core and repo that provide main low-level
cM functions documented at c-mind.org/doxygen.

In contrast with using SQL-based databases, our approach
can help systematize, preserve and describe any heterogeneous
code and data on any native file system without any need for
specialized databases, pre-defined data schema and complex
table restructuring as conceptually shown in Figure 5. Since
cM modules also have their own UOA (UID or alias), it
is now possible to easily reference and find any local user
material similar to DOI by a unified Collective ID (CID) of



5

Applications, 
benchmarks, kernels 

Multiple compilers 

Binaries and libraries 

Processors 

Operating Systems 

Program data sets 

 Statistical and data  
mining functions 

Predictive models 

Third-party tools, 
libraries 

code.source 

ctuning.compiler 

code 

processor 

os 

dataset 

math.statistics.r 

math.model 

algorithm 

Category cM module Module actions 

common*, transform 

common*,  
detect_host_processor 
 

common*, detect_host_family 

common*, create 

common*, analyze 

common*, build, predict, fit, 
detect_representative_points 

common*, install package 

High-level algorithms 

common*, build 

common*, compile_program 

common*, run 

All data 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

* add, list, view, copy, move, search 

Meta 
description 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

   .cmr   / module UOA (UID or alias)                                                / data UOA    / .cm / data.json 
cM repository  

directory structure: 

Fig. 5. Gradually categorizing all available user artifacts using cM
modules while making them searchable through meta-description and
reusable through unified cM module actions. All material from this
paper is shared through Collective Mind online live repository at
c-mind.org/browse and c-mind.org/github-code-source.

the following format:
⟨cM module UOA⟩:⟨cM data UOA⟩.

In addition, cM provides an option to transparently
index meta-description of all artifacts using a third-party,
open-source and JSON-based ElasticSearch framework
implemented on Hadoop engine [46] to enable fast and
powerful search queries for such a schema-free repository.
Note that other similar NoSQL databases including MongoDB
and CouchDB or even SQL-based repositories can be easily
connected to cM to cache data or speed up queries, if
necessary.

Any cM module with a given action can be executed in a
unified way using JSON format as both input and output either
through cM command line front-end

cm ⟨module UOA⟩ ⟨action⟩ @input.json
or using one Python function from a cM kernel module

r=cm kernel.access({’cm run module uoa’:⟨module UOA⟩,
’cm action’:⟨action⟩, action parameters})

or as a web service when running internal cM web server (also
implemented as cM web.server module) using the following
URL

http://localhost:3333?cm web module uoa=⟨module UOA⟩
&cm web action=⟨action⟩ ... .

For example, a user can list all available programs in the
system using cm code.source list and then compile a given
program using

cm code.source build
work dir data uoa=benchmark-cbench-security-blowfish
build target os uoa=windows-generic-64 .

If some parameters or dependencies are missing, the cM
module should be implemented as such to inform users about
how to fix these problems.

In order to simplify validation and reuse of shared
experimental setups, we provide an option to keep tools
inside a cM repository also together with a unified installation

mechanism that resolves all software dependencies. Such
packages including third-party tools and libraries can now
be installed into a different entry in a cM repository with
a unique IDs abstracted by cM code module. At the same
time, OS-dependent script is automatically generated for each
version of a package to set up appropriate environment
including all paths. This script is automatically called before
executing a given tool version inside an associated cM module
as shown in Figure 4.

In spite of its relative simplicity, the Collective Mind
approach helped us to gradually clean up and systematize
our material that can now be easily searched, shared, reused
or exposed to the web. It also helps substitute all ad-hoc
and hardwired experimental setups with interconnected and
unified modules and data that can be protected from continuous
changes in computer systems and easily shared among
workgroups. Users only need to categorize new material, move
related files to a special directory of format .cmr/⟨module
UOA⟩/⟨data UOA⟩ (where .cmr is an acronym for Collective
Mind Repository) to be automatically discovered and indexed
by cM, and provide some meta-information in JSON format
depending on research scenarios.

In contrast with public web-based sharing services,
we provide an open-source, technology-neutral, agile,
customizable, and portable knowledge management system
which allows both private and public systematization of
research and experimentation. To initiate and demonstrate
gradual and collaborative systematization of a research
material for auto-tuning and machine learning, we decided
to release all related code and data at c-mind.org/browse to
discuss, validate and rank shared artifacts while extending
their meta-description and abstract actions with the help
of the community. We described and shared multiple
benchmarks, kernels and real applications using cM
code.source module, various data sets using cM dataset
module, various parameterized classification algorithms and
predictive models using cM math.model module, and many
others.

We also shared packages with exposed dependencies
and installation scripts for many popular tools and
libraries in our public cM repository at c-mind.org/repo
including GCC, LLVM, ICC, Microsoft Visual Studio
compilers, PGI compilers, Open64/PathScale compilers, ROSE
source-to-source compilers, Oracle JDK, VTune, NVIDIA
GPU toolkit, perf, gprof, GMP, MPFR, MPC, PPL, LAPACK,
and many others. We hope that this will ease the burden of the
community to continuously (re-)implement some ad-hoc and
often unreleased experimental scenarios. In the next sections,
we will show how this approach can be used to systematize
and formalize auto-tuning.

III. FORMALIZING AUTO-TUNING AND PREDICTIVE
MODELING

Almost all research on auto-tuning can be formalized as
finding a function of a behavior of a given user program B
running on a given computer system with a given data set,
selected design and optimization choices including program
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transformations and architecture configuration c, and a system
state s ([5], [6], [47], [40]):

b = B(c,s)

For example, in our current and past research and
experimentation, b is a behavior vector that includes execution
time, power consumption, accuracy, compilation time, code
size, device cost, and other important characteristics; c
represents the available design and optimization choices
including algorithm selection, the compiler and its
optimizations, number of threads, scheduling, affinity,
processor ISA, cache sizes, memory and interconnect
bandwidth, etc; and finally s represents a state of the
system including processor frequency and cache or network
contentions.

Knowing and minimizing this function is of a particular
importance to our industrial partners when designing,
validating and optimizing the next generation of new
hardware and software including compilers for a broad
range of customers’ applications, data sets and requirements
(constraints), since it can help reduce time to market and cost
for the new systems while increasing return on investment
(ROI). However, the fundamental problem is that this function
B is highly non-linear with a multi-dimensional discrete and
continuous space of choices [11], [47] which is rarely possible
to model analytically or evaluate empirically using exhaustive
search unless really small kernels and libraries are used with
just one or a few program transformations [5], [6].

This problem motivated research on automatic and empirical
modeling of an associated function P that can quickly predict
better design and optimization choices for a given computer
system c based on some features (properties) of an end-users’
program, data set and a given hardware f, and a current state
of a computer system s:

c = P(f,s)

For example, in our research on machine-learning based
optimization, vector f includes semantic or static program
features [29], [30], [34], [40], data set features and hardware
counters [35], [22], system configuration, and run-time
environment parameters among many others. However, when
trying to implement practical and industrial scenarios in
cTuning framework, we spent most of our time on engineering
issues trying to expose characteristics, choices, features and
system state using numerous, “black box” and not necessarily
documented tools. Furthermore, when colleagues with a
machine learning background were trying to help us improve
optimization predictions, they were often quickly demotivated
when trying to understand our terminology and problems.

The Collective Mind approach helped our colleagues solve
this problem by formalizing the problem and gradually
exposing characteristics b, choices c, system state s and
features f (meta information) in experimental setups using
JSON format as shown in the following real example:
{”characteristics”:{

”execution times”: [”10.3”,”10.1”,”13.3”],
”code size”: ”131938”, ...},

”choices”:{
”os”:”linux”, ”os version”:”2.6.32-5-amd64”,
”compiler”:”gcc”, ”compiler version”:”4.6.3”,
”compiler flags”:”-O3 -fno-if-conversion”,
”platform”:{”

”processor”:”intel xeon e5520”, ”l2”:”8192”,
”memory”:”24” ...}, ...},

”features”:{
”semantic features”: {”number of bb”: ”24”, ...},
”hardware counters”: {”cpi”: ”1.4” ...}, ... }

”state”:{
”frequency”:”2.27”, ...}

}
Furthermore, we can easily convert JSON hierarchical

data into a flat vector format to apply above mathematical
formalization of auto-tuning and learning problem while
making it easily understandable to an interdisciplinary
community particularly with a background in mathematics
and physics. In our flat format, a flat key can reference any
key in a complex JSON hierarchy as one string. Such flat key
always starts with # followed by #key if it is a dictionary key
or @position in a list if it is a value in a list. For example,
flat key for the second execution time ”10.1” in one of the
previous examples of information flow can be referenced as
”##characteristics#execution time@1”. Finally, users can
gradually provide the following cM data specification for
the flat keys in information flow to fully automate program
optimization and learning (kept together with a given cM
module):

”flattened json key”:{
”type”: ”text” | ”integer” | ”float” | ”dict” | ”list” | ”uid”,
”characteristic”: ”yes” | ”no”,
”feature”: ”yes” | ”no”,
”state”: ”yes” | ”no”,
”has choice”: ”yes” | ”no”,
”choices”: [list of strings if categorical choice”],
”explore start”: ”start number if numerical range”,
”explore stop”: ”stop number if numerical range”,
”explore step”: ”step if numerical range”,
”can be omitted”: ”yes” | ”no”,
”default value”: ”string”
...

}
Of course, such format may have some limitations, but

it supports well our current research and experimentation
on auto-tuning and will be extended only when needed.
Furthermore, such implementation allowed us and our
colleagues to collaboratively prototype, validate and improve
various auto-tuning and learning scenarios simply by chaining
available cM modules similar to components and filters in
electronics (cM experimental pipelines) and reusing all shared
artifacts. For example, we converted our ad-hoc build and
run scripts from cTuning framework to a unified cM pipeline
consisting of chained cM modules as shown in Figure 6. This
pipeline (ctuning.pipeline.build and run) is implemented and
executed as any other cM module to help researchers simplify
the following operations during experimentation:
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Fig. 6. Unified build and run cM pipeline implemented as chained
cM modules.

• Source to source program transformation and
instrumentation (if required). For example, we
added support for PLUTO polyhedral compiler to
enable automatic restructuring and parallelization of
loops [48].

• Compilation and execution of any shared programs (real
applications, benchmarks and kernels) using code.source
module. Meta-description of these programs includes
information about how to build and execute them. Code
can be executed with any shared data set as an input
(dataset module). The community can gradually share
more data sets together with the unified descriptions of
their features such as dimensions of images, sizes of
matrices and so on.

• Testing of measured characteristics from repeated
executions for normal distribution [49] using shared
cM module ctuning.filter.variation to be able to
expose unusual behavior in a reproducible way
to the community for further analysis. Unexpected
behavior often means that some feature is missing
in the experimental pipeline such as frequency or
cache contention that can be gradually added by the
community to separate executions with different contexts
as described further in Section V.

• Applying Pareto frontier filter [50], [19], [40] to
leave only optimal solutions during multi-objective
optimization when multiple characteristics have to be
balanced at the same time such as execution time vs
code size vs power consumption vs compilation time.
This, in turn, can help to avoid collecting large amounts
of off-line and often unnecessary experimental data that
can easily saturate repositories and make data analysis
too time consuming or even impossible (as happened
several times with a public cTuning repository) .

In the next section we show how we can reuse
and customize this pipeline (demonstrated online
at c-mind.org/ctuning-pipeline) to systematize and run
some existing auto-tuning scenarios from our industrial
partners.

IV. SYSTEMATIZING AUTO-TUNING AND LEARNING
SCENARIOS

Unified cM build and run pipeline combined with
mathematical formalization allows researchers and engineers
to focus their effort on implementing and extending universal
auto-tuning and learning scenarios rather than hardwiring
them to specific systems, compilers, optimizations or tuned
characteristics. This, in turn, allows to distribute long tuning
process across multiple users while potentially solving an
old and well-known problem of using a few possibly
non-representative benchmarks and a limited number of
architectures when developing and validating new optimization
techniques.

Gradually extend cM build  
and run pipeline module 

Gradually expose 
characteristics 

Gradually expose design and 
optimization choices, features 

Select algorithm (time) productivity, 
variable-accuracy, 
complexity … 

Language, MPI, OpenMP, TBB, 
MapReduce … 

Analyze and 
transform 
program 

 

Process time;   
memory usage;  
code size … 

transformation ordering;   
polyhedral transformations;  
transformation parameters; 
instruction ordering; 
MPI parameters; 
number of threads; 
 
 

Function 

Kernel 

Loop 

Instruction 

Build program time …   compiler flags; pragmas … 

Run code Run-time 
environment 

time; power consumption 
… 

pinning/scheduling … 

System cost; size … CPU/GPU; frequency; memory … 

Data set size; values; description … precision … 

Run-time 
analysis 

time;  precision … hardware counters; power meters … 

Run-time 
state 

processor state; cache 
state …  

helper threads; hardware counters … 

Analyze profile Statistical 
analysis 

time;  size … instrumentation; profiling … 

Model behavior size; precision model type … 

Fig. 7. Gradual and collaborative top-down decomposition
of computer system software and hardware using cM modules
(wrappers) similar to methodology in physics. First, coarse-grain
design and optimization choices and features are exposed and tuned,
and later more fine-grain choices are exposed depending on the
available tuning time budget and expected return on investment.

Furthermore, it is now possible to take advantage of
mature interdisciplinary methodologies from other sciences
such as physics and biology to analyze and learn the
behavior of complex systems. Therefore, cM uses a top-down
methodology to decompose software and hardware into simple
sub-components to be able to start learning and tuning of a
global, coarse-grain program behavior with respect to exposed
coarse-grain tuning choices and features. Later, depending
on user requirements, time budget and expected return on
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investment during optimization, the community can extend
components to cover finer-grain tuning choices and behavior
as conceptually shown in Figure 7. Note, that when analyzing
a application at a finer-grain levels such as code regions, we
consider them as interacting cM components with their own
vectors of tuning choices, characteristics, features and internal
states. In doing so, we can analyze and learn their behavior
using methodologies from quantum mechanics or agent-based
modeling [51].

A. Unifying design and optimization space exploration
As the first practical usage scenario, we developed a

universal and customizable design and optimization space
exploration as cM module ctuning.scenario.exploration on
top of ctuning.pipeline.build and run program module to
substitute most ad-hoc tuning scripts and frameworks from
our past research. This scenario can be executed from the
command line as any other cM module thus enabling relatively
easy integration with third-party tools including compiler
regression buildbots or Eclipse-based framework. However, the
most user friendly way to run scenarios is through the cM web
interface as demonstrated at c-mind.org/ctuning-exploration
(note that we plan to improve the usability of this interface
with dynamic HTML, JavaScript and Ajax technology [52]
while hiding unnecessary information from users and avoiding
costly page refreshes). In such a way, cM will query all
chained modules for this scenario to automatically visualize all
available tuning choices, characteristics, features and system
states. cM will also preset all default values (if provided by
specification) while allowing a user to select which choices to
explore, characteristics to measure, search strategy to use, and
statistical analysis for experimental results to apply.

We currently implemented and shared uniform random
and exhaustive exploration strategies. We also plan to add
adaptive, probabilistic and hill climbing sampling from our
past research [17], [21] or let users develop and share any other
universal strategy which is not hardwired to any specific tool
but can explore any available choices exposed by the scenario.

Next, we present several practical and industrial auto-tuning
scenarios using above customized exploration module.

B. Systematizing compiler benchmarking
Validating new architecture designs across multiple

benchmarks, tuning optimization heuristics of multiple
versions of compilers, or tuning compiler flags for a customer
application is a tedious, time consuming and often ad-hoc
process that is far from being solved. In fact, it becomes even
tougher with time due to the ever rising number of available
optimizations (Figure 1) and many strict requirements placed
on compilers such as generating fast and small code for all
possible existing architectures within a reasonable amount of
time.

Collective Mind helps unify and distribute this process
among many machines as a performance tracking
buildbot. For this purpose, we customized universal
cM exploration module for compiler flag tuning as
a new ctuning.scenario.compiler.optimizations module.

Users just need to choose a compiler version and
related description of flags (example is available at
c-mind.org/ctuning-compiler-desc) as an input and select
either to explore a compiler flag optimization space for a
given program or distribute tuning of a default compiler
optimization heuristic across many machines using a set of
shared benchmarks. Note, that it is possible to use Collective
Mind not only on desktop machines, servers, data centers
and cloud services but also on bare metal hardware or
Android-based mobile devices (either through SSH or using a
special Collective Mind Node application available in Google
Play Store [53] to help deploy and crowdsource experiments
on mobile phones and tablets while aggregating results in
web-based cM repositories).
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Fig. 8. Compiler flag auto-tuning to improve execution time and code
size of a shared image corner detection program with a fixed data
set on Samsung Galaxy Series mobile phone using cM for Android.
Highlighted points represent frontier of optimal solutions as well as
GCC with -O3 and -Os optimization flags versus LLVM with -O3
flag (c-mind.org/interactive-graph-demo).

To demonstrate this scenario, we optimized a real image
corner detection program on a commodity Samsung Galaxy
Series mobile phone with ARMv6 830MHz processor using
Sourcery GCC v4.7.2 with randomly generated combinations
of compiler flags of format -O3 -f(no-)optimization flag
–parameter param=random number from range, LLVM v3.2
with -O3 flag, and a chained Pareto frontier filter (cM
module ctuning.filter.frontier) for multi-objective optimization
(balancing execution time, code size and compilation time).

Experimental results during such exploration (cM module
output) are continuously recorded in a repository in a unified
flat vector format making it possible to immediately take
advantage of numerous and powerful public web services for
visualization, data mining and analytics (for example from
Google, Microsoft, Oracle and IBM) or available as packages
for Python, Weka, MATLAB, SciLab, and R. For example,
Figure 8 shows 2D visualization of these experimental results
using public Google Web Services integrated with cM. Such
interactive graphs are particularly useful when working in
workgroups or for interactive publications (as demonstrated
at c-mind.org/interactive-graph-demo).

Note, that we always suggest to run optimized code several
times to check variation and test distribution for normality
as we used to do in physics and electronics. If such a test
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fails or the variation of any characteristic dimension is more
than some threshold (currently set as 2%), we do not skip
such case but record it as suspicious including all inputs and
outputs for further validation and analysis by the community
as described in Section V. At the same time, using a Pareto
frontier filter allows users to easily select the most appropriate
solution depending on the further intended usage of their
applications, i.e. the fastest variant if used for HPC systems,
the smallest variant if used for embedded devices with very
limited resources, such as credit card chips or the future
“Internet of Things” devices, or balanced for both speed and
size when used in mobile phones and tablets.

Since Collective Mind also enables co-existence of multiple
versions of different compilers, checks output of programs for
correct execution during optimization, and supports multiple
shared benchmarks and data sets, it can be easily used as
a distributed and public buildbot for rigorous performance
tracking and simultaneous tuning of compilers (as shown in
Figure 2) while taking advantage of a growing number of
shared benchmarks and data sets [54]. Longer term, we expect
that such an approach will help the community fully automate
compiler tuning for new architectures or even validate new
processor designs for errors. It can also help derive a realistic,
diverse and representative training set of benchmarks and data
sets [24] to systematize and speed up training for machine
learning based optimization prediction for previously unseen
programs and architectures [40].

To continue this collaborative effort, we shared the
description of all parametric and boolean (on or off)
compiler flags in JSON format as “choices” for a number of
popular compilers including GCC, LLVM, Open64, PathScale,
PGI and ICC under ctuning.compiler module. We also
implemented and shared several off-the-shelf classification
and predictive models including KNN and SVM from our
past research [34], [35], [40] using math.model module to
be able to automatically predict better compiler optimization
using semantic and dynamic program features. Finally, we
started implementing standard complexity reduction and
differential analysis techniques [55], [56] in cM to iteratively
isolate unusual program behavior [57] or to find minimal
set of representative benchmarks, data sets and correlating
features [24], [42]. Users can now collaboratively analyze
unexpected program behavior, improve predictive models, find
best tuning strategies and collect minimal set of influential
optimizations, representative features, most accurate models,
benchmarks and data sets.

C. Systematizing modeling of application behavior to focus
optimizations

Since programs may potentially have an infinite number
of data sets while auto-tuning is already time consuming, it
is usually performed for one or a few and not necessarily
representative data sets. Collective Mind can help to
systematize and automate modeling of a behavior of a given
application across multiple data sets to suggest where to focus
further tuning (adaptive sampling and online learning) [34],
[58], [21]. We just needed to customize previously introduced
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Fig. 9. Online learning (predictive modeling) of a CPI behavior of a
shared LU-decomposition benchmark on 2 different platforms (Intel
Core2 shown in red vs Intel i5 shown in blue) vs vector size N (data
set feature).

auto-tuning pipeline to explore data set parameters (already
exposed through dataset module) and model program behavior
at the same time using either off-the-shelf predictive models
including linear regression, Support Vector Machines (SVM),
Multivariate Adaptive Regression Splines (MARS), and neural
networks available for R language and abstracted by cM
module math.model.r, or shared user-defined hybrid models
specific for a given application.

For example, Figure 9 demonstrates how such exploration
and online learning is performed using cM together with shared
LU-decomposition benchmark versus size of input vector
(N), measured CPI characteristic, and 2 Intel-based platforms
(Intel Core2 Centrino T7500 Merom 2.2GHz L1=32KB 8-way
set-associative, L2=4MB 16-way set associative - red dots vs.
Intel Core i5 2540M 2.6GHz Sandy Bridge L1=32KB 8-way
set associative, L2=256KB 8-way set associative, L3=3MB
12-way set associative - blue dots).

In the beginning, cM does not have any knowledge about
behavior of this (or any other) benchmark, so it simply
observes and stores available characteristics along with the
data set features. At each exploration (sampling) step, cM
processes all historical observations using various available or
shared predictive models such as SVM or MARS in order to
find correlations between data set features and characteristics.
At the same time it attempts to minimize Root-Mean-Square
Deviation (RMSE) between predicted and measured values for
all available points. Even if RMSE is relatively low, cM can
continue exploring and observing behavior in order to detect
discrepancies (failed predictions).

Interestingly, in our example, practically no off-the-shelf
model could detect the A outliers (singularities) which
appear due to cache alignment problems. However, having
mathematical formalization helps interdisciplinary community
to find and share better models that minimized RMSE and
model size at the same time. In the presented case, our
colleagues from machine learning department managed to fit
and share a hybrid, parameterized, rule-based model that first
validates cases where data set size is a power of 2, otherwise
it uses linear models as functions of a data set and cache size.
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Fig. 10. CPI behavior of a matrix-matrix multiply benchmark
(CID=45741e3fbcf4024b:116a9c375e7d7e14) on Intel i5 platform
vs different matrix sizes. Hyperplanes separate areas with similar
behavior found using multivariate adaptive regression splines
(MARS).

This model resembles reversed analytical roofline model [59]
though is continuously and empirically refined to capture even
fine-grain effects. In contrast, standard MARS model managed
to predict the behavior of a matrix-matrix multiplication kernel
for different matrix sizes as shown in Figure 10.

Such models can help focus auto-tuning on areas with
distinct behavior as described in [17], [58], [21]. For example
presented in Figure 9, outlier points A can be optimized
using array padding; area B can profit from parallelization and
traditional compiler optimizations targeting ILP; areas C-E can
benefit from loop tiling; points A saturate memory bus and can
also benefit from reduced processor frequency to save energy.
Such optimizations can be performed automatically if exposed
through cM or provided by the community as shared advices
using ctuning.advice module.

In the end, multiple customizable models can be shared
as parameterized cM modules along with applications thus
allowing the community to continuously refine them or
even reuse them for similar classes of applications. Finally,
such predictive models can be used for effective and online
compaction of experiments while avoiding collection of a large
amount of data (known in other fields as a “big data” problem)
and leaving only representative or unexpected behavior. It
can, in turn, minimize communications between cM nodes
while making Collective Mind a giant and distributed learning
and decision making network to some extent similar to the
brain [42].

D. Enabling fine-grain auto-tuning through plugins
After learning and tuning coarse-grain behavior, we

gradually move to finer-grain levels including selected
code regions, loop transformations, MPI parameters and
so on, as shown in Figure 7. However, in our past
research, it required messy instrumentation of applications and
development of complex source-to-source transformation tools
and pragma-based languages.
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Fig. 11. Conceptual structure of compilers supporting plugin and
event based interface to enable fine-grain tuning and learning of their
internal and often hidden heuristics through external plugins [38].

As an alternative and simpler solution, we developed
an event-based plugin framework (Interactive Compilation
Interface and was recently substituted by a new and universal
OpenME plugin-based framework connected to cM) to
expose tuning choices and semantic program features from
production compilers such as GCC and LLVM through
external plugins [60], [43], [38]. This plugin-based tuning
technique helped us to start unifying, cleaning up and
converting rigid compilers into powerful and flexible research
toolsets. Such an approach also helped companies and
end-users to develop their own plugins with customized
optimization and tuning scenarios without rebuilding compilers
and instrumenting applications thus keeping them clean and
portable.

This framework also allowed to easily expose multiple
semantic code features to automatically learn and improve
all optimization and tuning decisions using standard machine
learning techniques as conceptually shown in Figure 11.
This plugin-based tuning technique was successfully used
in the MILEPOST project to automate online learning and
tuning of the default optimization heuristic of GCC for
new reconfigurable processors from ARC during software
and hardware co-design [40]. The plugin framework was
eventually added to mainline GCC since version 4.6. We
are gradually adding it to cM to support plugin-based
selection and ordering of internal compiler passes, tuning
and learning of internal compiler decisions, and aggregation
of semantic program features in a unified format using
ctuning.scenario.program.features.milepost module.

Plugin-based static compilers can help users automatically
or interactively tune a given application with a given data
set for a given architecture. However, different data sets or
run-time system state often require different optimizations and
tuning parameters that should be dynamically selected during



11

PTF Frontend 

Eclipse GUI 

Tuning 
plugins 

Analysis strategies 

Search algorithms 

Scenario execution 

Scenario execution 

Tuning Plugin Interface 

Common SIR file parser 

Agent network 
Parallel 

Application 

M
R

I 
M

o
n

it
o

r 

OpenME  (high-level event-based plugin framework) 

Collective Mind Framework and Repository  
Web services  

and UI 

Master 
agent 

High-
level 

agents 

Analysis 
agents 

Fig. 12. PTF plugin-based application online tuning framework.

execution. Therefore, Periscope Tuning Framework (PTF) [26]
was designed to enable and automate online tuning of parallel
applications using external plugins with integrated tuning
strategies. Users need to instrument application to expose
required tuning parameters and measured characteristics for
a given application. At the same time, tuning space can be
considerably reduced inside such plugins per given application
using previous compiler analysis or expert knowledge about
typical performance bottlenecks and ways to detect and
improve them as conceptually shown in Figure 12.

Once the online tuning process is finished, PTF generates
a report with the recommended tuning actions which can be
integrated either manually or automatically into the application
for further production runs. Currently, PTF includes plugins
to tune execution time of high-level parallel kernels for
GPGPUs, balance energy consumption via CPU frequency
scaling, optimize MPI runtime parameters among many other
scenarios in development.

Collective Mind can help PTF distribute tuning of shared
benchmarks and data sets among many users, aggregate
results in a common repository, apply data mining and
machine learning plugins to prune tuning spaces, and automate
prediction of optimal tuning parameters. PTF and cM can
also complement each other in terms of tuning coverage since
cM currently focuses on global, high-level, machine-learning
guided optimizations and compiler tuning while PTF currently
focuses on finer-grain online application tuning. In our future
work we plan to connect PTF and cM together using cM
OpenME interface.

E. Systematizing split compilation and adaptive scheduling

Many current online auto-tuning techniques have a
limitation - they usually do not support arbitrary online code
restructuring unless complex just-in-time (JIT) compilers are
used. As a possible solution to this problem, we introduced
split compilation to statically enable dynamic optimizations
and adaptation by cloning hot functions or kernels during
compilation and providing run-time selection mechanism
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Fig. 13. Making run-time adaptation and tuning practical using static
multi-versioning, features exposed by users or automatically detected,
and predictive modeling (decision trees) while avoiding complex
dynamic recompilation frameworks.

depending on data set features, target architecture features
and a system state [61], [24], [62], [22]. However, since this
approach still requires a long and off-line training phase, we
can now use Collective Mind to systematize off-line tuning
and learning of a program behavior across many data sets and
computer systems as conceptually shown in Figure 13.

2mm.c / 2mm.cu 
… 
#ifdef OPENME 
#include <openme.h> 
#endif 
… 
 
int main(void) { 
… 
#ifdef OPENME   
  openme_init(NULL,NULL,NULL,0);   
  openme_callback("PROGRAM_START", NULL); 
#endif 
… 
 
#ifdef OPENME   
  openme_callback(“SELECT_KERNEL", &adapt); 
#endif   
 

#ifdef OPENME   
  openme_callback("KERNEL_START", NULL); 
#endif   
 
if (adaptive_select==0) mm2_cpu(A, B, C, D, E); 
elif (adaptive_select==1) cl_launch_kernel(A,B,C,D,E); 
elif (adaptive_select==2) mm2Cuda(A, B, C, D, E, 
                                                                     E_outputFromGpu); 
 
#ifdef OPENME   
  openme_callback("KERNEL_END", NULL); 
#endif 
… 
 
#ifdef OPENME     
  openme_callback("PROGRAM_END", NULL); 
#endif 
… 
} 

Fig. 14. Example of predictive scheduling of matrix-matrix
multiplication kernel for heterogeneous architectures using OpenME
interface and statically generated kernel clones with different
algorithm implementations and optimizations to find the winning one
at run-time.

Now, users can take advantage of continuously collected
knowledge about program behavior and optimization in
the repository to derive a minimal set of representative
optimizations or tuning parameters covering application
behavior across as many data sets and architectures as
possible [24]. Furthermore, it is now possible to reuse machine
learning techniques from cM to automatically derive small
and fast decision trees needed for realistic cases shown in
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Figures 3, 9 and 10. Such decision trees can now be integrated
with the application through OpenME or PTF plugins to
dynamically select appropriate clones and automatically adapt
for heterogeneous architectures particularly in supercomputers
and data centers, or even execute some external tools to
reconfigure architecture (change frequency, for example) based
on exposed features to minimize execution time, power
consumption and other user objectives. These data set,
program and architecture features can also be exposed through
plugins either automatically using OpenME-based compilers or
manually through application annotation and instrumentation.

OpenME was designed especially to be very easy to use
for researchers and provide a simple connection between
Python-based Collective Mind and other modules or plugins
written in other languages including C, C++, Fortran and Java.
It has only two functions to initialize an event with an arbitrary
string name, and to call it with a void type argument that will be
handled by a user plugin and can range from a simple integer to
a cM JSON dictionary. However, since such implementation of
OpenME can be relatively slow, we use fast Periscope Tuning
Framework for fine-grain tuning. Possible example of such
implementation for predictive scheduling of matrix multiply
using OpenME interface and several clones for heterogeneous
architectures [22] is presented in Figure 14.

Our static function cloning approach with dynamic
adaptation was recently added to mainline GCC since
version 4.8. We hope that together with OpenME, PTF and
cM, it will help systematize research on split compilation
while focusing on finding and exposing the most appropriate
features to improve run-time adaptation decisions [24] using
recent advances in machine learning, data mining and decision
making [63], [64], [65], [66].

F. Automating benchmark generation and differential analysis
Our past research on machine learning to speed up

auto-tuning suffered from yet another well-known problem:
lack of large and diverse benchmarks. Though Collective Mind
helps share multiple programs and data sets including ones
from [23], [67], [40], it may still not be enough to cover
all possible program behavior and features. One possibility
is to generate many synthetic benchmarks and data sets but
it always result in explosion in tuning and training times.
Instead, we propose to use Alchemist plugin [42] together
with plugin-enabled compilers such as GCC to use existing
benchmarks, kernels and even data sets as templates and
randomly modify them by removing, modifying or adding
various instructions, basic blocks, loops and so on. Naturally,
we can ignore crashing variants of the code and continue
evolving only the working ones.

We can use such an approach not only to gradually extend
realistic training sets, but also to iteratively identify various
behavior anomalies or detect missing code features to explain
unexpected behavior similar to differential analysis from
electronics [55], [56]. For example, we are adding support to
Alchemist plugin to iteratively scalarize memory accesses to
characterize code and data set as CPU or memory bound [57],
[47]. Its prototype was used to obtain line X in Figure 9

showing ideal code behavior when all floating point memory
accesses are NOPed. Additionally, we use Alchemist plugin to
unify extraction of code structure, patterns and other features
to collaboratively improve prediction during software/hardware
co-design [36].

V. ENABLING AND IMPROVING REPRODUCIBILITY OF
EXPERIMENTAL RESULTS
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Fig. 15. Unexpected behavior helped to identify and add a missing
feature to cM (processor frequency) as well as software dependency
(cpufreq) that ensures reproducibility of experimental results.

Since cM allows to implement, preserve and share the
whole experimental setup, it can also be used for reproducible
research and experimentation. For example, unified module
invocation in cM makes it possible to reproduce (replay)
any experiment by saving JSON input for a given module
and an action, and comparing JSON output. At the same
time, since execution time and other characteristics often
vary, we developed and shared cM module that applies
Shapiro-Wilk test from R to test monitored characteristic
for normality. However, in contrast with current experimental
methodologies where results not passing such test are simply
skipped, we record them in a reproducible way to find
and explain missing features in the system. For example,
when analyzing multiple executions of image corner detection
benchmark on a smart phone shown in Figure 8, we noticed
an occasional 4x difference in execution times as shown
in Figure 15. Simple analysis showed that our phone was
often in the low power state at the beginning of experiments
and then gradually switched to the high-frequency state
(4x difference in frequency). Though relatively obvious,
this information allowed us to add CPU frequency to
the build and run pipeline using cpufreq module and
thus separate such experiments. Therefore, Collective Mind
research methodology can gradually improve reproducibility
as a side effect and with the help of the community rather
than trying to somehow enforce it from the start.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents our novel, community-driven approach
to make auto-tuning practical and move it to mainstream
production environments. However, rather than searching for
yet another “holy grail” auto-tuning technique, we propose to
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start preserving, sharing and reusing already available practical
knowledge and experience about program optimization and
hardware co-design using Collective Mind framework and
repository. Such approach helps researchers and engineers
quickly prototype and validate various auto-tuning and
learning techniques as plugins connected into experimental
pipelines while reusing all shared artifacts. Such pipelines
can be distributed among many users to collaboratively
learn, model and tune program behavior using standard
top-down methodology from mature sciences such as
physics by decomposing complex software into interconnected
components while capturing first coarse-grain effects and later
moving to finer-grain levels. At the same time, any unexpected
behavior and optimization mispredictions are exposed to
the community in a reproducible way to be explained
and improved. Therefore, we can collaboratively search for
profitable optimizations, efficient auto-tuning strategies, truly
representative benchmarks, and most accurate models to
predict optimizations together with minimal set of relevant
semantic and dynamic features.

Our future collaborative work includes exposing more
tuning dimensions, characteristics and features using
Collective Mind and Periscope tuning frameworks to
eventually tune the whole computer system while extrapolating
collected knowledge to build faster, more power efficient and
reliable self-tuning computer systems. We are working with
the community to gradually unify existing techniques and tools
including pragma-based source-to-source transformations [68],
[69], plugin-based GCC and LLVM to expose and tune all
internal optimization decisions [40], [42]; polyhedral
source-to-source transformation tools [48]; differential
analysis to detect performance anomalies and CPU/memory
bounds [57], [47]; just-in-time compilation for Android
Dalvik or Oracle JDK; algorithm-level tuning [70]; techniques
to balance communication and computation in numerical
codes particularly for heterogeneous architectures [71], [27];
Scalasca framework to automate analysis and modeling of
scalability of HPC applications [72], [73]; LIKWID for
light-weight collection of hardware counters [74]; HPCC and
HPCG benchmarks to collaboratively rank HPC systems [75],
[76]; benchmarks from GCC and LLVM, TAU performance
tuning framework [77]; and all recent Periscope application
tuning plugins [25], [26].

At the same time we plan to use collected and unified
knowledge to improve our past techniques on decomposition
of complex programs into interconnected kernels, predictive
modeling of program behavior, and run-time tuning and
adaptation [61], [51], [24], [78], [58], [22], [79], [80],
[81]. Finally, we are extending Collective Mind to assist
recent initiatives on reproducible research and new publication
models in computer engineering where all experimental results
and related research artifacts with all dependencies are
continuously shared along with publications to be validated
and improved by the community [82].
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