
Quick and practical run-time evaluation of multiple
program optimizations

Grigori Fursin,1,2 Albert Cohen,1 Michael O’Boyle2 and Olivier Temam1

1 Members of HiPEAC, ALCHEMY Group, INRIA Futurs and LRI, Paris-Sud University,
France

{grigori.fursin,albert.cohen,olivier.temam}@inria.fr
2 Member of HiPEAC, Institute for Computing Systems Architecture, University of Edinburgh,

UK
mob@inf.ed.ac.uk

Abstract. This article aims at making iterative optimization practical and usable by speeding
up the evaluation of a large range of optimizations. Insteadof using a full run to evaluate a single
program optimization, we take advantage of periods of stable performance, called phases. For
that purpose, we propose a low-overhead phase detection scheme geared toward fast optimization
space pruning, using code instrumentation and versioning implemented in a production compiler.

Our approach is driven by simplicity and practicality. We show that a simple phase detection
scheme can be sufficient for optimization space pruning. We also show it is possible to search
for complex optimizations at run-time without resorting tosophisticated dynamic compilation
frameworks. Beyond iterative optimization, our approach also enables one to quickly design self-
tuned applications.

Considering 5 representative SpecFP2000 benchmarks, our approach speeds up iterative
search for the best program optimizations by a factor of 32 to962. Phase prediction is99.4%

accurate on average, with an overhead of only2.6%. The resulting self-tuned implementations
bring an average speed-up of1.4.

1 Introduction
Recently, iterative optimization has become an increasingly popular approach for tack-
ling the growing complexity of processor architectures. Bodin et al. [7] and Kisuki et al.
[25] have initially demonstrated that exhaustively searching an optimization parameter
space can bring performance improvements higher than the best existing static mod-
els, Cooper et al. [17] have provided additional evidence for finding best sequences of
various compiler transformations. Since then, recent studies [42, 21, 3] demonstrate the
potential of iterative optimization for a large range of optimization techniques.

Some studies show how iterative optimization can be usedin practice, for instance,
for tuning optimization parameters in libraries [46, 6] or for building static models for
compiler optimization parameters. Such models derive fromthe automatic discovery of
the mapping function between key program characteristics and compiler optimization
parameters; e.g., Stephenson et al. [39] successfully applied this approach to unrolling.

However, most other articles on iterative optimization take the same approach: sev-
eral benchmarks are repeatedly executed with the same data set, a new optimization
parameter (e.g., tile size, unrolling factor, inlining decision,. . .) being tested at each
execution. So, while these studies demonstrate thepotentialfor iterative optimization,
few provide apractical approach for effectively applying iterative optimization. The
issue at stake is: what do we need to do to make iterative optimization a reality? There
are three main caveats to iterative optimization: quickly scanning a large search space,

2 Grigori Fursin et al.

optimizing based on and across multiple data sets, and extending iterative optimization
to complex composed optimizations beyond simple optimization parameter tuning.

In this article, we aim at the general goal of making iterative optimization a usable
technique and especially focus on the first issue, i.e., how to speed up the scanning
of a large optimization space. As iterative optimization moves beyond simple param-
eter tuning to composition of multiple transformations [21, 31, 27, 13] (the third issue
mentioned above), this search space can become potentiallyhuge, calling for faster
evaluation techniques. There are two possible ways to speeding up the search space
scanning: search more smartly by exploring points with the highest potential using ge-
netic algorithms and machine learning techniques [16, 17, 43, 40, 1, 29, 22, 39], or scan
more points within the same amount of time. Up to now, speeding up the search has
mostly focused on the former approach, while this article isfocused on the latter one.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 11 21 31 41 51 61 71 81 91 101 7013 7023

function calls

ti
m

e
(s

ec
)

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101 7013 7023

function calls

IP
C

Fig. 1.Execution time and IPC for subroutineresid of benchmarkmgrid across calls.

The principle of our approach is to improve the efficiency of iterative optimization
by taking advantage of programperformance stabilityat run-time. There is ample evi-
dence that many programs exhibit phases [37, 26], i.e., program trace intervals of several
millions instructions where performance is similar. What is the point of waiting for the
end of the execution in order to evaluate an optimization decision (e.g., evaluating a
tiling or unrolling factor, or a given composition of transformations) if the program per-
formance is stable within phases or the whole execution? Onecould take advantage of
phase intervals with the same performance to evaluate a different optimization option at
each interval. As in standard iterative optimization, manyoptions are evaluated, except
that multiple options are evaluated within the same run.

The main assets of our approach over previous techniques aresimplicity and prac-
ticality. We show that a low-overhead performance stability/phase detection scheme is
sufficient for optimization space pruning for loop-based floating point benchmarks. We
also show that it is possible to search (even complex) optimizations at run-time with-
out resorting to sophisticated dynamic optimization/recompilation frameworks. Beyond

Lecture Notes in Computer Science 3

Application

Most time consuming code sections Multi-versions of time consuming code
sections & phase detection/prediction

Apply various transformations over
multi-versions of code sections

Run-time iterative search

PathScale EKOPath Compiler
transformations

Manual transformations

Instrumentation

Transformations
Execution with
iterative search

timer_start timer_start

timer_stop timer_stop

Fig. 2. Application instrumentation and multi-versioning for run-time iterative optimization

iterative optimization, our approach also enables one to quickly design self-tuned ap-
plications, significantly easier than manually tuned libraries.

Phase detection and optimization evaluation are respectively implemented using
code instrumentation and versioning within the EKOPath compiler. Considering 5 self-
tuned SpecFP2000 benchmarks, our space pruning approach speeds up iterative search
by a factor of 32 to 962, with a99.4% accurate phase prediction and a2.6% perfor-
mance overhead on average; we achieve speedups ranging from1.10 to 1.72.

The paper is structured as follows. Section 2 provides the motivation, showing how
our technique can speedup iterative optimization, and including a brief description of
how it may be applied in different contexts. Section 3 describes our novel approach
to runtime program stability detection. This is followed inSection 4 by a description
of our dynamic transformation evaluation technique. Section 5 describes the results of
applying these techniques to well known benchmarks and is followed in Section 6 by a
brief survey of related work. Section 7 concludes the paper.

2 Motivation

This section provide a motivating example for our techniqueand outlines the ways in
which it can be used in program optimization.

4 Grigori Fursin et al.

2.1 Example
Let us consider themgrid SpecFP2000 benchmark. For the sake of simplicity, we
have tested only 16 random combinations of traditional transformations, known to be
efficient, on the two most time consuming subroutinesresid andpsinv. These trans-
formations include loop fusion/fission, loop interchange,loop and register tiling, loop
unrolling, prefetching. Since the original execution timeof mgrid is 290 seconds (for
the reference data set), a typical iterative approach for selecting the best optimization
option would take approximately290×32 = 9280 seconds (more than 2 hours). More-
over, all these tests are conducted with the same data set, which does not make much
sense from a practical point of view.

However, considering the execution time of every call to theoriginal subroutine
resid in Figure 1, one notices fairly stable performance across pairs of consecutive
calls with period 7.1 Therefore, we propose to conduct most of these iterations atrun-
time, evaluating multiple versions during a single or a few runs of the application. The
overall iterative program optimization scheme is depictedin Figure 2.

Practically, we insert all 16 different optimized versionsof resid andpsinv into
the original code. As shown in the second box of Figure 2, eachversion is enclosed
by calls to monitoring functions before and after the instrumented section. These timer
functions monitor the execution time and performance of anyactive subroutine version
using the high-precision PAPI hardware counters library [8], allowing to switch at run-
time among the different versions of this subroutine. This low-overhead instrumentation
barely skews the program execution time (less than1%) as shown in Figure 3.

0

50

100

150

200

250

300

original instrumented
(but no

transformations)

instrumented
(1st run)

instrumented
(2nd run)

best version
selected from

the start

tim
e

(s
ec

)

Fig. 3. Execution times for different versions of benchmarkmgrid

If one run is not enough to optimize the application, it is possible to iterate on the
multi-version program, the fourth box in Figure 2. Eventually, if new program trans-
formations need to be evaluated, or when releasing an optimized application restricted
to the most effective optimizations, one may also iterate back to apply a new set of
transformations, the third box in Figure 2.

Figure 4 details the instrumentation and versioning scheme. Besides starting and
stopping performance monitoring,timer start andtimer stop have two more
functions:timer stop detects performance stability for consecutive or periodicex-
ecutions of the selected section, using execution time and IPC; thentimer start
predicts that performance will remain stable, in order to evaluate and compare new op-
tions. After stability is detected,timer start redirects execution sequentially to the

1 Calls that take less than0.01s are ignored to avoid startup or instrumentation overhead,there-
fore their IPC bars are not shown in this figure.

Lecture Notes in Computer Science 5

Original code
SUBROUTINE RESID(U,V,R,N,A)
REAL*8 U(N,N,N),V(N,N,N),R(N,N,N),A(0:3)
INTEGER N, I3, I2, I1

BODY OF THE SUBROUTINE
RETURN
END

Instrumented code
SUBROUTINE RESID(U,V,R,N,A)
REAL*8 U(N,N,N),V(N,N,N),R(N,N,N),A(0:3)
INTEGER N, I3, I2, I1
INTEGER FSELECT

CALL TIMER START(00001, FSELECT)
GOTO (1100, 1101, 1102, 1103, 1104, 1105,

(...)
+1115, 1116), FSELECT+1

(...)
1100 CONTINUE

CALL RESID 00(U,V,R,N,A)
GOTO 1199

1101 CONTINUE
CALL RESID 01(U,V,R,N,A)
GOTO 1199

(...)
1199 CONTINUE

CALL TIMER STOP(00001)
RETURN
END

SUBROUTINE RESID 00(U,V,R,N,A)
REAL*8 U(N,N,N),V(N,N,N),R(N,N,N),A(0:3)
INTEGER N, I3, I2, I1

BODY OF THE SUBROUTINE
RETURN
END

SUBROUTINE RESID 01(U,V,R,N,A)
REAL*8 U(N,N,N),V(N,N,N),R(N,N,N),A(0:3)
INTEGER N, I3, I2, I1

BODY OF THE SUBROUTINE
RETURN
END

Fig. 4. Instrumentation example for subroutineresid of benchmarkmgrid.

optimized versions of the original subroutine. When the currently evaluated version has
exhibited stable performance for a few executions (2 in our case), we can measure its
impact on performanceif the phase did not change in the meantime. To validate this,
the original code is executed again a few times (2 in our case to avoid transitional ef-
fects). In the same way all 16 versions are evaluated during program execution and the
best one is selected at the end, as shown in Figure 5a.

Overall, evaluating all 16 optimization options for subroutineresid requires only
17 seconds instead of 9280 thus speeding up iterative search546 times. Furthermore,
since the best optimization has been found after only6% of the code has been executed,
the remainder of the execution uses the best optimization option and the overallmgrid
execution time is improved by13.7% all in one run (one data set) as shown in Figure 5b.
The results containing original execution time, IPC and thecorresponding best option
which included loop blocking, unrolling and prefetching inour example, is saved in
the database after the program execution. Therefore, during a second run with the same
dataset (assuming standard across-runs iterative optimization), the best optimization op-
tion is selected immediately after the period is detected and the overall execution time is
improved by16.1% as shown in Figure 5c. If a different dataset is used and the behavior
of the program changed, the new best option will be found for this context and saved
into the database. Finally, the execution time of the non-instrumented code with the best
version implemented from the start (no run-time convergence) brings almost the same
performance of17.2% as shown in Figure 5d and 3. The spikes on the graphs in Fig-
ure 5b,c are due to the periodic change in calling context of subroutineresid. At such
change points, the phase detection mechanism produces a miss and starts executingthe
original non-transformed versionof the subroutine, to quickly detect the continuation
of this phase or the beginning of another one (new or with a known behavior).

2.2 Application scenarios
The previous example illustrates the two main applicationsof our approach. The first
one is iterative optimization, and the second is dynamic self-tuning code.

In the first case, each run — and each phase within this run — exercises multiple
optimization options, including complex sequences of compiler or manual transforma-
tions. The phase analysis and optimization decisions are dumped into a database. This

6 Grigori Fursin et al.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 42 70 98 213 2025

function calls

tim
e (

se
c)

startup (phase detection) or end of the optimization process (best option found) evaluation of 1 option

(a) detailed view of the beginning and the end of the optimization process

for the 1st run

0

0.02

0.04

0.06

0.08

0.1

0.12

1 201 401 601 801 1001 1201 1401 1601 1801 2001

function calls

tim
e (

se
c)

(b) all calls during program execution, 1st run

0

0.02

0.04

0.06

0.08

0.1

0.12

1 201 401 601 801 1001 1201 1401 1601 1801 2001

function calls

tim
e (

se
c)

(c) all calls during program execution, 2nd run

0

0.02

0.04

0.06

0.08

0.1

0.12

1 201 401 601 801 1001 1201 1401 1601 1801 2001

function calls

tim
e (

se
c)

(d) all calls during program execution without instrumentation

(best optimization selected from the start)

…

Fig. 5.Execution times for subroutineresid of benchmarkmgrid during run-time optimization

facility can be used for across-runs iterative optimization. There are two cases where
this approach is practical. First, some applications may exhibit similar performance
across multiple data sets, providing key parameters do not change (e.g., matrix dimen-
sions do not change, but matrix values do); second, even whenthe performance of a
code section varies with the data set, it is likely that a few optimizations will be able
to achieve good results for a large range of data sets. In bothcases, run-time iterative
optimization can speed up optimization space search: a selection of optimizations is
evaluated during each run, progressively converging to thebest optimization.

In the second case, our technique allows to create self-tuning programs which adjust
to the current data set, within a production run. This methodsmoothly adapts the pro-
gram to maximize performance, unlike static cloning techniques that specialize function
to input parameters using decision trees and often fail to correctly associate performance
anomalies with the right version. Assuming the optimized versions known to perform
best (in general, for multiple benchmarks) have been progressively learned across pre-
vious runs and data sets, one can implement a self-tuning code by selecting only a few
of those versions. Even if some of the selected versions perform poorly, they do not

Lecture Notes in Computer Science 7

really affect overall execution time since convergence occurs quickly and most of the
execution time is spent within the best ones.

3 Dynamic Stability Prediction
The two key difficulties with dynamic iterative optimization are how to evaluate mul-
tiple optimization options at run-time and when can they be evaluated. This section
tackles the second problem by detecting and predicting stable regions of the program
where optimizations may be evaluated.

3.1 Performance stability and phases

As mentioned in the introduction, multiple studies [37, 33]have highlighted that pro-
grams exhibitphases, i.e., performance can remain stable for many millions instructions
and performance patterns can recur within the program execution. Phase analysis is now
extensively used for selecting sampling intervals in processor architecture simulation,
such as in SimPoint [33]. More recently, phase-based analysis has been used to tune
program power optimizations by dynamically adapting sizesof L1 and L2 caches [23].

For iterative optimization, phases mean that the performance of a given code section
will remain stable for multiple consecutive or periodic executions of that code section.
One can take advantage of this stability to compare the effect of multiple different op-
timization options. For instance, assuming one knows that two consecutive executions
E1 andE2 of a code section will exhibit the same performanceP , one can collectP
in E1, apply a program transformation to the code section, and collect its performance
P

′ in E2; by comparingP andP
′, one can decide if the program transformation is

useful. Obviously, this comparison makes sense only ifE1 andE2 exhibit the same
baseline performanceP , i.e., if E1 andE2 belong to the same phase. So, the key is
to detect when phases occur, i.e., where are the regions withidentical baseline per-
formance. Also, IPC may not always be a sufficient performance metric, because some
program transformations may increase or reduce the number of instructions, such as un-
rolling or scalar promotion. Therefore, we monitor not onlyperformance stability but
also execution time stability across calls, depending on the program transformations.

Figures 6 and 1 illustrate IPC and execution time stability of one representative sub-
routine for 5 SpecFP2000 benchmarks by showing variations across calls to the same
subroutine. These benchmarks are selected to demonstrate various representative be-
havior for floating point programs. For instance, theapplu subroutine has a stable
performance across all calls except for the first one; thegalgel subroutine has pe-
riodic performance changes with 5 shifts during overall execution; theequake most
time-consuming section exhibits unstable performance for250 calls and then becomes
stable; theapsi subroutine has a stable performance across all calls; finally, themgrid
subroutine exhibits periodic stable performance.

Detecting stability For the moment, we do not consider program transformations,and
two instances are compared solely using IPC. We then simply define stability by 3
consecutive or periodic code section execution instances with the same IPC. Naturally,
this stability characterization is speculative, the 4th instance performance may vary, but
in practice as graphs in Figure 6 suggest, stability regionsare long and regular enough
so that the probability of incorrect stability detections (miss rate) is fairly low.

8 Grigori Fursin et al.

0

0.2

0.4

0.6

1 16 31 46 61 76 333 348

tim
e

(s
ec

)

0
0.1
0.2
0.3
0.4

1 16 31 46 61 76 333 348
function calls

IP
C

173.applu

0

0.5

1

1.5

1 16 31 46 61 76 91 106

tim
e

(s
ec

)

0

0.5

1

1 16 31 46 61 76 91 106
function calls

IP
C

178.galgel

0

0.02

0.04

0.06

1 16 31 46 252 267 3840 3855

tim
e

(s
ec

)

0.25
0.3

0.35
0.4

1 16 31 46 252 267 3840 3855
function calls

IP
C

183.equake

0
0.2
0.4
0.6
0.8

1 16 31 46 61

tim
e

(s
ec

)

0

0.1

0.2

1 16 31 46 61
function calls

IP
C

301.apsi

 Fig. 6.Execution time and IPC for one representative subroutine per benchmark (across calls)

Note however, that the occurrence of a phase (an execution instance with a given
performance) is only detectedafter it has occurred, i.e., when the counter value is col-
lected and the code section instance already executed. If changes in the calling context
occur faster than the evaluation of a new optimization option, there may not be long
enough consecutive executions with stable performance to measure the impact of the
optimization. Therefore, it is not sufficient toreact to phase changes: within a phase, it
is necessary to detect thelength of consecutive regionsof stable performance and topre-

Lecture Notes in Computer Science 9

Application Code PhasesHits Misses Miss
sections rate

mgrid a 1 1924 27 0.014

b 1 998 1 0.001

applu a 1 348 0 0
b 2 349 0 0
c 2 349 0 0
d 1 350 0 0
e 1 350 0 0

galgel a 2 86 12 0.140

b 2 83 14 0.169

equake a 2 3853 1 0.000

apsi a 1 69 0 0
b 1 69 0 0
c 1 69 0 0
d 1 69 0 0
e 1 70 0 0
f 1 69 0 0

Table 1. Number of phases, phase prediction hits and misses per code section for each applica-
tion.

dict their occurrence. Fortunately, Figure 6 shows that phases tend to recur regularly,
especially in scientific applications which usually have simple control flow behavior,
which is further confirmed by other broader experiments [38].

To predict the occurrence of regular phases, for each instrumented code section,
we store the performance measurement along with the number of calls exhibiting the
same performance (phase length) in a Phase Detection and Prediction Table (PDPT) as
shown in Figure 7. If a performance variation occured, we check the table to see if a
phase with such behavior already occurred, and if so, we alsorecord the distance (in
number of calls) since it occurred. At the third occurrence of the same performance be-
havior, we conclude the phase becomes stable and recurs regularly, i.e., with a fixed pe-
riod, and we can predict its next occurrence. Then, program transformations are applied
to the code section, and the performance effects are only compared within the same
phase, i.e., for the same baseline performance, avoiding toreset the search each time
the phase changes. The length parameter indicates when the phase will change. Thus,
the transformation space is searched independently for allphases of a code section.
This property has the added benefit of allowing per-phase optimization, i.e., converging
towards different optimizations for different phases of the same code section.

Table 1 shows how the phase prediction scheme performs. Due to the high regularity
of scientific applications, our simple phase prediction scheme has a miss rate lower than
1.4% in most of the cases, except forgalgel which exhibits miss rates of14% and
17% for two time-consuming subroutines. Also, note that we assumed two performance
measurements were identical provided they differ by less than a threshold determined
by observed measurement error, of the order of2% with our experimental environment.

10 Grigori Fursin et al.

3.2 Compiler instrumentation
Since, program transformations target specific code sections, phase detection should
target code sections rather than the whole program. In orderto monitor code sections
performance, we instrument a code section, e.g., a loop nestor a function, with per-
formance counter calls from the hardware counters PAPI library. Figure 4 shows an
example instrumentation at the subroutine/function levelfor mgrid (Fortran 77) and
its resid subroutine. Figure 7 shows the details of our instrumentation.

Each instrumented code section gets a unique identifier, andbefore and after each
section, monitoring routinestimer start andtimer stop are called. These rou-
tines record the number of cycles and number of instructionsto compute the IPC (the
first argument is the unique identifier of the section). At thesame time,timer stop
detects phases and stability, andtimer start decides which optimization option
should be evaluated next and returns variableFSELECT to branch to the appropriate
optimization option (versioning), see theGOTO statement.

Instrumentation is currently applied before and after the call functions and the outer
loops of all loop nests with depth 2 or more (though the approach is naturally useful for
the most time-consuming loop nests and functions only). Note that instrumented loop
nests can themselves contain subroutine calls to evaluate inlining; however we forbid
nested instrumentations, so we systematically remove outer instrumentations if nested
calls correspond to loop nests.

4 Evaluating Optimizations
Once a stable period has been detected we need a mechanism to evaluate program trans-
formations and evaluate their worth.

4.1 Comparing optimization options
As soon as performance stability is observed, the evaluation of optimization options
starts. A new optimization option is said to be evaluated only after 2 consecutive execu-
tions with the same performance. The main issue is to combinethe detection of phases
with the evaluation of optimizations, because, if the phasedetection scheme does not
predict that a new phase starts, baseline performance will change, and we would not
know whether performance variations are due to the optimization option being evalu-
ated or to a new phase.

In order to verify the prediction, the instrumentation routine periodically checks
whether baseline performance has changed (and in the process, it monitors the occur-
rence of new phases). After any optimization option evaluation, i.e., after 2 consecutive
executions of the optimized version with the same performance, the code switches back
to the original code section for two additional iterations.The first iteration is ignored
to avoid transition effects because it can be argued that theprevious optimized version
of the code section can have performance side-effects that would skew the performance
evaluation of the next iteration (the original code section). However, we did not find
empirical evidence of such side-effects; most likely because code sections have to be
long enough that instrumentation and start-up induces onlya negligible overhead. If the
performance of the second iteration is similar to the initial baseline performance, the
effect of the current option is validated and further optimization options evaluation re-
sumes. Therefore, evaluating an optimization option requires at least 4 executions of a

Lecture Notes in Computer Science 11

given code section (2 for detecting optimization performance stability and 2 for check-
ing baseline performance). For example, see the groups of black bars in Figure 5a of the
motivation section (on benchmarkmgrid). If the baseline performance is later found
to differ, the optimization search for this other phase is restarted (or started if it is the
first occurrence of that phase).2

Practically, the Phase Detection and Prediction Table (PDPT) shown in Figure 7
holds information about phases and their current state (detection and prediction), new
option evaluation or option validation (stability check).It also records the best option
found for every phase.

4.2 Multiple evaluations at run-time

original
time consuming

code section

save current time and number of
instructions executed

calculate time spent in the code
section and IPC; detect phases and

check stability; select new code
for the following execution

detect phases

original
time consuming

code section

…

… …

…

PDPT (Phase Detection and Prediction Table)

time IPC call period length hits misses state best

option

 …

Look up current time and IPC in the PDPT;
find the same time & IPC and update period &

length or add new phase parameters

original code instrumented code

transformed
code section

if this call should be within phase:
call original
section for

stability check

call new
section for
evaluation

stability test selection of the
new code section
if stability

If the current call should be within phase (look up
PDPT), then either select original code during
phase detection/stability test or select new code

sections for iterative optimizations

or

timer_start

timer_stop

Fig. 7. Code instrumentation for run-time adaptive iterative optimizations.

Many optimizations are parameterized, e.g., tile size or unroll factor. However, in
the context of run-time iterative optimization, whether changing a parameter just means
changing a program variable (e.g., a parametric tile size),or changing the code structure
(e.g., unroll factor) matters. The former type of optimization can be easily verified by
updating the parameter variable. In order to accommodate the latter type of complex
optimizations, we use versioning: we generate and optimizedifferently multiple ver-
sions of the same code section (usually a subroutine or a loopnest), plus the additional
control/switching code driven by the monitoring routine asshown in Figures 7 and 4,
using the EKOPath compiler.

The main drawback of versioning is obviously increased codesize. While this issue
matters for embedded applications, it should not be a serious inconvenience for desktop
applications, provided the number of optimization optionsis not excessive. Considering

2 Note that it isrestartednot reset.

12 Grigori Fursin et al.

only one subroutine or loop nest version will be active at anytime, even the impact of
versioning on instruction cache misses is limited. However, depending on what run-
time adaptation is used for, the number of versions can vary greatly. If it is used for
evaluating a large number of program transformations, including across runs, the greater
the number of versions the better, and the only limitation isthe code size increase. If it
is used for creating self-adjusting codes that find the best option for the current run, it
is best to limit the number of options, because if many options perform worse than the
original version, the overall performance may either degrade or marginally improve. In
our experiments, we limited the number of versions to 16.

This versioning scheme is simple but has practical benefits.Alongside the optimized
versions generated by the compiler, the user can add subroutines or loop nests modified
by hand, and either test them as is or combine them with compiler optimizations. User-
suggested program transformations can often serve as starting points of the optimization
search, and recent studies [15, 42] highlight the key role played by well selected starting
points, adding to the benefit of combined optimizations. Moreover, another study [13]
suggests that iterative optimization should not be restricted to program transformation
parameter tuning, but should expand to selecting program transformations themselves,
beyond the strict composition order imposed by the compiler. Versioning is a simple
approach for testing a variety of program transformations compositions.

5 Experiments
The goal of this article is to speedup the evaluation of optimization options, rather than
to speedup programs themselves. Still, we later report program speedups to highlight
that the run-time overhead has no significant impact on program performance, that the
run-time performance analysis strategy is capable of selecting appropriate and efficient
optimization options, and that it can easily accommodate both traditional compiler-
generated program transformations and user-defined ad-hocprogram transformations.

5.1 Methodology
Platforms and tools.All experiments are conducted on an Intel Pentium 4 Northwood
(ID9) Core at 2.4GHz (bus frequency of 533MHz), the L1 cache is 4-way 8KB, the L2
cache is 8-way 512KB, and 512MB of memory; the O/S is Linux SUSE 9.1. We use the
latest PAPI hardware counter library [30] for program instrumentation and performance
measurements. All programs are compiled with the open-source EKOPath 2.0 compiler
and -Ofast flag [32], which, in average, performs similarly or better than the Intel 8.1
compiler for Linux.

Compiler-generated program transformations are applied using the EKOPath com-
piler. We have created an EKOPath API that triggers program transformations, using
the compiler’s optimization strategy as a starting point. Complementing the compiler
strategy with iterative search enables to test a large set ofcombinations of transforma-
tions such as inlining, local padding, loop fusion/fission,loop interchange, loop/register
tiling, loop unrolling and prefetching.

Target benchmarks.We considered five representative SpecFP2000 benchmarks
with different behavior, as shown in Figure 6 (mgrid, applu, galgel, equake,
apsi), using theref data sets. We apply optimization only on the most-time con-
suming sections of these benchmarks. We handpicked these codes based on the study

Lecture Notes in Computer Science 13

by Parello et al. [31] which suggests which SpecFP2000 benchmarks have the best po-
tential for improvement (on an Alpha 21264 platform, though). Since the role of seed
points in iterative search has been previously highlighted[1, 42], we also used the latter
study as an indication for seed points, i.e., initial pointsfor a space search.

5.2 Results
This section shows that the full power of iterative optimization can be achieved at the
cost of profile-directed optimization: one or two runs of each benchmark are sufficient
to discover the best optimization options for every phase.

Application Max. number of Number of Code sizeInstrumentation
potential evaluationsoptions evaluatedincrease (times) overhead

mgrid 699 32 4.3 0%

applu 430 80 5.5 0.01%

galgel 32 32 2.6 0.01%

equake 962 16 2.5 13.17%

apsi 96 96 5.3 0%

Table 2.Maximum number of potential evaluations or iterative search speedup vs. the real num-
ber of options evaluated during single execution and the associated overhead.

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

iterations

ex
ce

cu
ti

o
n

 t
im

e
(m

s)

compiler option -Ofast + various transformations compiler option -Ofast

Fig. 8. Execution time variations of the
resid subroutine of themgrid benchmark
over iterations (subroutine calls).

1

1.2

1.4

1.6

1.8

2

mgrid applu galgel equake apsi average

sp
ee

d
u

p

1st run 2nd run best option from start

Fig. 9. Speedups of instrumented program
over original program after first run, second
run or if the best option is selected from the
start.

Boosting search rateFor each benchmark, Table 2 shows the actual number of evalu-
ated options, which is the number of versions multiplied by the number of instrumented
code sections and by the number of phases with significant execution time.

However, the maximum number of potential optimization options (program trans-
formations or compositions of program transformations) that can be evaluated during
one execution of a benchmark can be much higher depending on the application be-
havior. Thanks to run-time adaptation it is now possible to evaluate 32 to 962 more
optimization options than through traditional across-runs iterative optimization. The
discrepancy among maximum number of evaluations is explained by the differences
in phase behavior of programs and in the instrumentation placement. If the instrumen-
tation is located at a lower loop nest level, it enables a greater number of evaluations

14 Grigori Fursin et al.

but it can also induce excessive overhead and may limit applicable transformations. On
the other hand, instrumentation at a higher level enables all spectrum of complex se-
quences of transformations but can limit the number of potential evaluations during one
execution. For example, the number of potential optimization evaluations is small for
galgel due to chaotic behavior and frequent performance mispredictions, and is high
for equake due to relatively low level instrumentation.

To quantify the instrumentation overhead, the last column in Table 2 shows the ratio
of the execution time of the instrumented program over the original program, assuming
all optimization options are replaced with exact copies of the original code section. As
a result, this ratio only measures the slowdown due to instrumentation. The overhead is
negligible for 4 out of 5 benchmarks, and reaches13% for equake. Note however that
equake still achieves one of the best speedups at1.7, as shown in Figure 9.

Finally, Table 2 shows the code size increase after the program instrumentation. In
all cases it is modest, and the expansion factor is considerably smaller than the number
of optimization versions we evaluate at run-time. This is easily explained by observing
that time-consuming sections are generally small in scientific codes. Furthermore, for
self-tuning applications which will retain only a few versions with the best optimiza-
tions, their code size increase should not be significant.

Self-tuned speedupFor each selected benchmark we have created a self-tuning pro-
gram with 16 versions of each most time consuming sections ofthese benchmarks. For
each of these versions we applied either combinations of compiler-generated program
transformations or manual program transformations suggested by Parello et al. [31] for
the Alpha platform, or combinations of both:

– Compiler-generated transformations were obtained through our EKOPath compiler
API, using randomly selected parameters (this API wraps internal compiler phases
to allow external control on transformations such as loop fusion/fission, loop inter-
change, loop and register tiling, loop unrolling and prefetching on any part of the
code).

– We manually optimized the code wherever the EKOPath compiler failed to apply a
transformation as directed through the API (due to internallimitations or to consa-
vative static analysis information), or whenever unsupported transformations were
required.

The overall number of evaluations per each benchmark variedfrom 16 to 96 depending
on the number of most-time consuming sections, as shown in table 2.

Figure 8 shows an example of execution time variations for the triple-nested loop in
theresid subroutine of themgrid benchmark for each option evaluation all within
one execution of this program. The baseline performance is shown in a straight gray line
and the best version is found at iteration 13. The final best sequence of transformations
for the loop in the subroutineresid is loop tiling with tile size 60, loop unrolling
with factor 16 and prefetching switched off. The best parameters found for subroutine
psinv of the same benchmark are 9 for loop tiling and 14 for loop unrolling. Note
also that the static algorithm of the EKOPath compiler suggested unrolling factors of 2
for loops of both subroutines. This factor is a kind of tradeoff value across all possible
data sets, while the self-tuning code converged toward a different value dynamically. It

Lecture Notes in Computer Science 15

is important to note that this adjustment occurred at run-time, during a single run, and
that the optimization was selected soon enough to improve the remainder of the run.

Figure 9 shows the speedups obtained for all benchmarks after two executions as
well as the speedups assuming there is no instrumentation overhead and the best op-
timization option is used from the start; speedups vary from1.10 to 1.72. The differ-
ence in the speedups between successive runs of the application depends mainly on
the percentage of overall execution time spent evaluating different options. Naturally,
the higher the ratio of the maximum number of potential evaluations to the number
of real evaluations, the faster the convergence to the maximal performance level. The
difference in the speedups achived using our new technique and when selecting the
best option from the start depends on the quality of our phasedetection and prediction
scheme. This difference is quite high forgalgel due to frequent performance mis-
predictions and forequake due to relatively low level instrumentation. This suggests
further improvements are needed for our performance stability detection scheme. It is
also interesting to note that, though the manual transformations were designed for a
different architecture (Alpha 21264), for 4 out of 5 benchmarks, they were eventually
adjusted through transformation parameter tuning to our target architecture, and still
perform well. In other terms, beyond performance improvement on a single platform,
self-adjusting codes also provide a form of cross-platformportability by selecting the
optimization option best suited for the new platform.

6 Related Work
Some of the first techniques to select differently optimizedversions of code sections are
cloning and multi-versioning [9, 14, 18]. They use simple version selection mechanisms
according to the input run-time function or loop parameters. Such techniques are used
to some extent in current compilers but lack flexibility and prediction and cannot cope
with various cases where input parameters are too complex ordiffer while the behavior
of the code section remains the same and vice versa.

To improve cloning effectiveness, many studies defer code versioning to the run-
time execution. Program hot spots and input/context parameters are detected at run-
time, to drive dynamic recompilation. For example, the Dynamo system [4] can op-
timize streams of native instructions at run-time using hottraces and can be easily
implemented inside JIT compilers. Insertion of prefetching instructions or changing
prefetching distance dynamically depending on hardware counter metrics is presented
in [35].

Dynamic optimization on object code is limited by the lack ofabstract semantical
information (types, control structures, abstract variable names). Many run-time tech-
niques thus resort to dynamic code generation and compilation. Multi-stage program-
ming is one general computing paradigm that fits well with thedynamic optimization
context [10, 41]: it denotes the syntactic and semantic support allowing a program to
generate another program and execute it, having multiple program levels cooperate
and share data. Multi-stage programming has been applied toadaptive optimization
of high-performance applications [12, 5]. Yet these source-level approaches will only
see a limited applicability to continuous optimization dueto run-time compilation over-
head. Alternatively, languages like ‘C [34] (spelled Tick-C, a multi-stage extension of
C) emphasize code generation speed: ‘C is based on VCODE, a very fast framework to

16 Grigori Fursin et al.

produce native code at run-time [20]. To reduce run-time code generation overhead, [2]
presents a technique which produces pre-optimized machine-code templates and later
dynamically patch those templates with run-time constants. ADAPT [45, 44] applies
high-level optimizations to program hot spots using dynamic recompilation in a sepa-
rate process or on a separate workstation and describes a language to write self-tuned
applications. ADORE [11, 28] uses a sampling-based phase analysis to detect perfor-
mance bottlenecks and apply simple transformations such asprefetching dynamically.
Finally, dynamic code regions (DCR) improve on sampling-based analysis, focusing
the monitoring on procedure and loops [24] only.

Recently, software-only solutions have been proposed to effectively detect, classify
and predict phase transitions, with very low run-time overhead [4, 19]. In particular,
[19] decouples this detection from the dynamic code generation or translation process,
relying on a separate process sampling hardware performance counters at a fixed inter-
val. Selection of a good sampling interval is critical, to avoid missing fine-grain phase
changes while minimizing overhead [33, 36].

In contrast with the above-mentioned projects, our approach is a novel combina-
tion of versioning, code instrumentation and software-only phase detection to enable
practical iterative evaluation of complex transformations at run-time. We choose static
versioning rather than dynamic code generation, allowing low-overhead adaptability to
program phases and input contexts. Associating static instrumentation and dynamic de-
tection avoids most pitfalls of either isolated instrumentation-based or sampling-based
phase analyses, including sensitivity to calling contexts[24] and sampling interval se-
lection [26]. Finally, we rely on predictive rather than reactive phase detection, although
it is not for the reasons advocated in [19]: we do not have to amortize the overhead of
run-time code generation, but we need to predict phase changes to improve the evalua-
tion rate for new optimization options.

7 Conclusions and Perspectives
Several practical issues still prevent iterative optimization from being widely used, the
time required to search the huge program transformations space being one of the main
issues. In this article, we present a method for speeding up search space pruning by a
factor of 32 to 962 over a set of benchmarks, by taking advantage of the phase behav-
ior (performance stability) of applications. The method, implemented in the EKOPath
compiler, can be readily applied to a large range of applications. The method has other
benefits: such self-tuned programs facilitate portabilityacross different architectures
and software environments, they can self-adjust at the level of phases and to partic-
ular data sets (as opposed to the trade-off proposed by current iterative techniques),
they can build a catalog of per-phase appropriate program transformations (code sec-
tion/performance pairs) across runs, and they can easily combine user-suggested and
compiler-suggested transformations thanks to their versioning approach.

Future work will include fast analysis of large complex transformation spaces, im-
proving our phase detection and prediction scheme to capture more complex perfor-
mance behaviors for integer and DSP-type benchmarks, and improving the instrumen-
tation placement, especially using self-placement of instrumentation at the most proper
loop nest levels, by instrumenting all loop nests levels, then dynamically switching off
instrumentation at all levels but one, either using predication or versioning again. We are

Lecture Notes in Computer Science 17

currently extending our work to create self-tuning applications on embedded systems
where the size of the application is critical and on multi-core architectures.

AcknowledgmentsGrigori Fursin has been supported by a grant from European Net-
work of Excellence on High-Performance Embedded Architecture and Compilation
(HiPEAC). We would also like to thank all our colleagues and reviewers for their com-
ments.

References
1. L. Almagor, K. D. Cooper, A. Grosul, T. Harvey, S. Reeves, D. Subramanian, L. Torczon,

and T. Waterman. Finding effective compilation sequences.In Proc. Languages, Compilers,
and Tools for Embedded Systems (LCTES), pages 231–239, 2004.

2. J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, andB. N. Bershad. Fast, effective
dynamic compilation. InConference on Programming Language Design and Implementation
(PLDI), pages 149–159, 1996.

3. J. T. B. Franke, M. O’Boyle and G. Fursin. Probabilistic source-level optimisation of embed-
ded systems software. InACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES’05), 2005.

4. V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent dynamic optimization
system. InACM SIGPLAN Notices, 2000.

5. O. Beckmann, A. Houghton, P. H. J. Kelly, and M. Mellor. Run-time code generation in
c++ as a foundation for domain-specific optimisation. InProceedings of the 2003 Dagstuhl
Workshop on Domain-Specific Program Generation, 2003.

6. J. Bilmes, K. Asanović, C. Chin, and J. Demmel. Optimizing matrix multiply using PHiPAC:
A portable, high-performance, ANSI C coding methodology. In Proc. ICS, pages 340–347,
1997.

7. F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Rohou. Iterative compilation in a
non-linear optimisation space. InProc. ACM Workshop on Profile and Feedback Directed
Compilation, 1998. Organized in conjunction with PACT98.

8. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming inter-
face for performance evaluation on modern processors.The International Journal of High
Performance Computing Applications, 14(3):189–204, 2000.

9. M. Byler, M. Wolfe, J. R. B. Davies, C. Huson, and B. Leasure. Multiple version loops. In
ICPP 1987, pages 312–318, 2005.

10. C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementing multi-stage languages using
ASTs, Gensym, and reflection. InACM SIGPLAN/SIGSOFT Intl. Conf. Generative Pro-
gramming and Component Engineering (GPCE’03), pages 57–76, 2003.

11. H. Chen, J. Lu, W.-C. Hsu, and P.-C. Yew. Continuous adaptive object-code re-optimization
framework. In Ninth Asia-Pacific Computer Systems Architecture Conference (ACSAC
2004), pages 241–255, 2004.

12. A. Cohen, S. Donadio, M.-J. Garzaran, C. Herrmann, and D.Padua. In search of a program
generator to implement generic transformations for high-performance computing.Science
of Computer Programming, 2006. To appear.

13. A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and N. Vasilache. Facilitating the
search for compositions of program transformations.ACM Int. Conf on Supercomputing
(ICS’05), June 2005.

14. K. D. Cooper, M. W. Hall, and K. Kennedy. Procedure cloning. In Proceedings of the 1992
IEEE International Conference on Computer Language, pages 96–105, 1992.

15. K. D. Cooper, K. Kennedy, and L. Torczon. The impact of interprocedural analysis and
optimization in the Rn programming environment.ACM Transactions on Programming
Languages and Systems, 8:491–523, 1986.

18 Grigori Fursin et al.

16. K. D. Cooper, P. Schielke, and D. Subramanian. Optimizing for reduced code space us-
ing genetic algorithms. InProc. Languages, Compilers, and Tools for Embedded Systems
(LCTES), pages 1–9, 1999.

17. K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive optimizing compilers for the 21st
century.J. of Supercomputing, 23(1), 2002.

18. P. Diniz and M. Rinard. Dynamic feedback: An effective technique for adaptive computing.
In Proc. PLDI, pages 71–84, 1997.

19. E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and predicting program
behavior and its variability. InIEEE PACT 2003, pages 220–231, 2003.

20. D. Engler. Vcode: a portable, very fast dynamic code generation system. InProceedings of
PLDI, 1996.

21. G. Fursin, M. O’Boyle, and P. Knijnenburg. Evaluating iterative compilation. InProc.
Languages and Compilers for Parallel Computers (LCPC), pages 305–315, 2002.

22. K. Heydeman, F. Bodin, P. Knijnenburg, and L. Morin. UFC:a global trade-off strategy for
loop unrolling for VLIW architectures. InProc. Compilers for Parallel Computers (CPC),
pages 59–70, 2003.

23. S. Hu, M. Valluri, and L. K. John. Effective adaptive computing environment management
via dynamic optimization. InIEEE / ACM International Symposium on Code Generation
and Optimization (CGO 2005), 2005.

24. J. Kim, S. V. Kodakara, W.-C. Hsu, D. J. Lilja, and P.-C. Yew. Dynamic code region (DCR)-
based program phase tracking and prediction for dynamic optimizations. InIntl. Conf. on
High Performance Embedded Architectures & Compilers (HiPEAC’05), number 3793 in
LNCS, Barcelona, Spain, Sept. 2005. Springer Verlag.

25. T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijshoff. Iterative compilation in program
optimization. InProc. Compilers for Parallel Computers (CPC2000), pages 35–44, 2000.

26. J. Lau, S. Schoenmackers, and B. Calder. Transition phase classification and prediction. In
International Symposium on High Performance Computer Architecture, 2005.

27. S. Long and G. Fursin. A heuristic search algorithm basedon unified transformation frame-
work. In 7th International Workshop on High Performance Scientific and Engineering Com-
puting (HPSEC-05), 2005.

28. J. Lu, H. Chen, P.-C. Yew, and W.-C. Hsu. Design and implementation of a lightweight
dynamic optimization system. InThe Journal of Instruction-Level Parallelism, volume 6,
2004.

29. A. Monsifrot, F. Bodin, and R. Quiniou. A machine learning approach to automatic produc-
tion of compiler heuristics. InProc. AIMSA, LNCS 2443, pages 41–50, 2002.

30. PAPI: A Portable Interface to Hardware Performance Counters. http://icl.cs.utk.edu/
papi, 2005.

31. D. Parello, O. Temam, A. Cohen, and J.-M. Verdun. Toward asystematic, pragmatic and
architecture-aware program optimization process for complex processors. InProc. Int. Con-
ference on Supercomputing, 2004.

32. PathScale EKOPath Compilers.http://www.pathscale.com, 2005.
33. E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder. Using simpoint

for accurate and efficient simulation. InACM SIGMETRICS the International Conference
on Measurement and Modeling of Computer Systems, 2003.

34. M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. ‘C and tcc: A language and
compiler for dynamic code generation.ACM Trans. Prog. Lang. Syst., 21(2):324–369, Mar.
1999.

35. R. H. Saavedra and D. Park. Improving the effectiveness of software prefetching with
adaptive execution. InConference on Parallel Architectures and Compilation Techniques
(PACT’96), 1996.

Lecture Notes in Computer Science 19

36. X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In ACM SIGARCH Computer
Architecture News, pages 165–176, 2004.

37. T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing large
scale program behavior. In10th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2002.

38. T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing large
scale program behavior. InProceedings of ASPLOS-X, 2002.

39. M. Stephenson and S. Amarasinghe. Predicting unroll factors using supervised classifica-
tion. In IEEE / ACM International Symposium on Code Generation and Optimization (CGO
2005). IEEE Computer Society, 2005.

40. M. Stephenson, M. Martin, and U. O’Reilly. Meta optimization: Improving compiler heuris-
tics with machine learning. InProc. PLDI, pages 77–90, 2003.

41. W. Taha.Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon Grad-
uate Institute of Science and Technology, Nov. 1999.

42. S. Triantafyllis, M. Vachharajani, and D. I. August. Compiler optimization-space explo-
ration. InJournal of Instruction-level Parallelism, 2005.

43. X. Vera, J. Abella, A. González, and J. Llosa. Optimizing program locality through CMEs
and GAs. InProc. PACT, pages 68–78, 2003.

44. M. Voss and R. Eigemann. High-level adaptive program optimization with adapt. InPro-
ceedings of the Symposium on Principles and practices of parallel programming, 2001.

45. M. Voss and R. Eigenmann. Adapt: Automated de-coupled adaptive program transformation.
In Proc. ICPP, 2000.

46. R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. InProc.
Alliance, 1998.

