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Abstract. This article aims at making iterative optimization praatiand usable by speeding
up the evaluation of a large range of optimizations. Instefading a full run to evaluate a single
program optimization, we take advantage of periods of st@elrformance, called phases. For
that purpose, we propose a low-overhead phase detectiemsofpeared toward fast optimization
space pruning, using code instrumentation and versioniigmented in a production compiler.

Our approach is driven by simplicity and practicality. Westthat a simple phase detection
scheme can be sulfficient for optimization space pruning. M show it is possible to search
for complex optimizations at run-time without resortinggophisticated dynamic compilation
frameworks. Beyond iterative optimization, our approalso @nables one to quickly design self-
tuned applications.

Considering 5 representative SpecFP2000 benchmarks, ppuioach speeds up iterative
search for the best program optimizations by a factor of 396®. Phase prediction #9.4%
accurate on average, with an overhead of ahB/%. The resulting self-tuned implementations
bring an average speed-upoft.

1 Introduction

Recently, iterative optimization has become an incredgipgpular approach for tack-
ling the growing complexity of processor architecturesdBeet al. [7] and Kisuki et al.
[25] have initially demonstrated that exhaustively searglan optimization parameter
space can bring performance improvements higher than tbieesésting static mod-
els, Cooper et al. [17] have provided additional evidencdifming best sequences of
various compiler transformations. Since then, recentistufd2, 21, 3] demonstrate the
potential of iterative optimization for a large range ofiogization techniques.

Some studies show how iterative optimization can be usedactice for instance,
for tuning optimization parameters in libraries [46, 6] or building static models for
compiler optimization parameters. Such models derive filoerautomatic discovery of
the mapping function between key program characteristicscmmpiler optimization
parameters; e.g., Stephenson et al. [39] successfullyeabiplis approach to unrolling.

However, most other articles on iterative optimizatioretéie same approach: sev-
eral benchmarks are repeatedly executed with the same elata sew optimization
parameter (e.g., tile size, unrolling factor, inlining @an,...) being tested at each
execution. So, while these studies demonstratg@tientialfor iterative optimization,
few provide apractical approach for effectively applying iterative optimizatiorhe
issue at stake is: what do we need to do to make iterative @atiion a reality? There
are three main caveats to iterative optimization: quickigrsing a large search space,
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optimizing based on and across multiple data sets, anddirigiterative optimization
to complex composed optimizations beyond simple optinongtarameter tuning.

In this article, we aim at the general goal of making itemiptimization a usable
technique and especially focus on the first issue, i.e., lwgpeed up the scanning
of a large optimization space. As iterative optimizationve® beyond simple param-
eter tuning to composition of multiple transformations [21, 27, 13] (the third issue
mentioned above), this search space can become potertiadly, calling for faster
evaluation techniques. There are two possible ways to spgegh the search space
scanning: search more smartly by exploring points with tigladést potential using ge-
netic algorithms and machine learning techniques [16,3,4@, 1, 29, 22, 39], or scan
more points within the same amount of time. Up to now, spegedjmthe search has
mostly focused on the former approach, while this articl®ised on the latter one.
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Fig. 1. Execution time and IPC for subroutimeesi d of benchmarkrgr i d across calls.

The principle of our approach is to improve the efficiencytefative optimization
by taking advantage of prograperformance stabilityat run-time. There is ample evi-
dence that many programs exhibit phases [37, 26], i.e.rprotrace intervals of several
millions instructions where performance is similar. Wheathie point of waiting for the
end of the execution in order to evaluate an optimizatiorisitee (e.g., evaluating a
tiling or unrolling factor, or a given composition of tramsmations) if the program per-
formance is stable within phases or the whole execution?donkl take advantage of
phase intervals with the same performance to evaluateexeliff optimization option at
each interval. As in standard iterative optimization, mapyions are evaluated, except
that multiple options are evaluated within the same run.

The main assets of our approach over previous techniquesrapdicity and prac-
ticality. We show that a low-overhead performance stalipihase detection scheme is
sufficient for optimization space pruning for loop-baseafiog point benchmarks. We
also show that it is possible to search (even complex) opétitins at run-time with-
out resorting to sophisticated dynamic optimization/rapdation frameworks. Beyond
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Fig. 2. Application instrumentation and multi-versioning for rtime iterative optimization

iterative optimization, our approach also enables one tokfjudesign self-tuned ap-
plications, significantly easier than manually tuned lies.

Phase detection and optimization evaluation are resgdgtinplemented using
code instrumentation and versioning within the EKOPathgiten Considering 5 self-
tuned SpecFP2000 benchmarks, our space pruning approaetisspp iterative search
by a factor of 32 to 962, with 89.4% accurate phase prediction an®.8% perfor-
mance overhead on average; we achieve speedups ranging.fromo 1.72.

The paper is structured as follows. Section 2 provides thévaton, showing how
our technique can speedup iterative optimization, andiudioly a brief description of
how it may be applied in different contexts. Section 3 démsiour novel approach
to runtime program stability detection. This is followedS$ection 4 by a description
of our dynamic transformation evaluation technique. $#ch describes the results of
applying these techniques to well known benchmarks andl@Afed in Section 6 by a
brief survey of related work. Section 7 concludes the paper.

2 Motivation

This section provide a motivating example for our technignd outlines the ways in
which it can be used in program optimization.
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2.1 Example

Let us consider thergr i d SpecFP2000 benchmark. For the sake of simplicity, we
have tested only 16 random combinations of traditionaldfamations, known to be
efficient, on the two most time consuming subroutinesi d andpsi nv. These trans-
formations include loop fusion/fission, loop interchanigep and register tiling, loop
unrolling, prefetching. Since the original execution tiofargr i d is 290 seconds (for
the reference data set), a typical iterative approach fectag the best optimization
option would take approximatef}p0 x 32 = 9280 seconds (more than 2 hours). More-
over, all these tests are conducted with the same data sief) dbes not make much
sense from a practical point of view.

However, considering the execution time of every call to éhiginal subroutine
resi d in Figure 1, one notices fairly stable performance across fd consecutive
calls with period 7 Therefore, we propose to conduct most of these iterationsmat
time, evaluating multiple versions during a single or a fews of the application. The
overall iterative program optimization scheme is depiéteBigure 2.

Practically, we insert all 16 different optimized versiafs esi d andpsi nv into
the original code. As shown in the second box of Figure 2, esrkion is enclosed
by calls to monitoring functions before and after the instemted section. These timer
functions monitor the execution time and performance ofactive subroutine version
using the high-precision PAPI hardware counters libratyg8owing to switch at run-
time among the different versions of this subroutine. Tovg-bverhead instrumentation
barely skews the program execution time (less thi@has shown in Figure 3.

time (sec)
BoBoN N
@ o @ 9 a
o & 8 & 38 &
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(2nd run)

eeeeeeeeeee
selected from
the start

Fig. 3. Execution times for different versions of benchmagk i d

If one run is not enough to optimize the application, it is gibke to iterate on the
multi-version program, the fourth box in Figure 2. Eventudf new program trans-
formations need to be evaluated, or when releasing an gmthrapplication restricted
to the most effective optimizations, one may also iterateklda apply a new set of
transformations, the third box in Figure 2.

Figure 4 details the instrumentation and versioning scheBesides starting and
stopping performance monitoringj mer st art andt i mer _st op have two more
functions:t i mer _st op detects performance stability for consecutive or periadic
ecutions of the selected section, using execution time B thent i mer _st art
predicts that performance will remain stable, in order taleste and compare new op-
tions. After stability is detected,i mer _st ar t redirects execution sequentially to the

! Calls that take less than01s are ignored to avoid startup or instrumentation overhtgae-
fore their IPC bars are not shown in this figure.
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Original code 1101 CONTI NUE
SUBROUTI NE RESI (U, V, R, N, A) CALL RESIDO1(U, V,R N, A)
REAL*8 U(N, N, N), V(N, N, N), R(N, N, N), A(O: 3) GOTO 1199
INTEGER N, 13, 12, I1 (...)
BODY OF THE SUBROUTI NE 1199 CONTI NUE
RETURN CALL TI MER.STOP(00001)
END RETURN
END
Instrumented code
SUBROUTI NE RESI (U, V, R, N, A) SUBROUTI NE RESI D.OO(U, V, R N, A)
REAL*8 U(N, N, N), V(N, N, N), R(N, N, N) , A(O: 3) REAL*8 U(N, N, N), V(N, N, N), R(N, N, N) , A(O: 3)
INTEGER N, 13, 12, I1 INTEGER N, 13, 12, I1
| NTEGER FSELECT BODY OF THE SUBROUTI NE
RETURN
CALL TI MERSTART(00001, FSELECT) END
GOTO (1100, 1101, 1102, 1103, 1104, 1105,
(...) SUBROUTI NE RESI DO1(U, V, R N, A)
+1115, 1116), FSELECT+1 REAL*8 U(N, N, N), V(N, N, N), R(N, N, N), A(0: 3)
(...) INTEGER N, 13, 12, I1
1100 CONTI NUE BODY OF THE SUBROUTI NE
CALL RESID.OO(U, V,R N, A) RETURN
GOTO 1199 END

Fig. 4. Instrumentation example for subroutinesi d of benchmarkrgr i d.

optimized versions of the original subroutine. When theently evaluated version has
exhibited stable performance for a few executions (2 in @seg, we can measure its
impact on performancé the phase did not change in the meantime. To validate this,
the original code is executed again a few times (2 in our caseeid transitional ef-
fects). In the same way all 16 versions are evaluated duriogram execution and the
best one is selected at the end, as shown in Figure 5a.

Overall, evaluating all 16 optimization options for subtioer esi d requires only
17 seconds instead of 9280 thus speeding up iterative sédfctimes. Furthermore,
since the best optimization has been found after 6fyof the code has been executed,
the remainder of the execution uses the best optimizatitinoropnd the overaligr i d
execution time is improved by3.7% all in one run (one data set) as shown in Figure 5b.
The results containing original execution time, IPC anddbeesponding best option
which included loop blocking, unrolling and prefetchingonr example, is saved in
the database after the program execution. Therefore,glargecond run with the same
dataset (assuming standard across-runs iterative ojatiimiz), the best optimization op-
tion is selected immediately after the period is detectetthe overall execution time is
improved byl6.1% as shown in Figure 5c. If a different dataset is used and thavier
of the program changed, the new best option will be foundHa tontext and saved
into the database. Finally, the execution time of the n@triimented code with the best
version implemented from the start (no run-time converggicings almost the same
performance ofl 7.2% as shown in Figure 5d and 3. The spikes on the graphs in Fig-
ure 5b,c are due to the periodic change in calling contextibfautiner esi d. At such
change points, the phase detection mechanism produces antgistarts executirtge
original non-transformed versioaf the subroutine, to quickly detect the continuation
of this phase or the beginning of another one (new or with asmloehavior).

2.2 Application scenarios
The previous example illustrates the two main applicatioihgur approach. The first
one is iterative optimization, and the second is dynamiictseing code.

In the first case, each run — and each phase within this run —+ciees multiple
optimization options, including complex sequences of cilenpr manual transforma-
tions. The phase analysis and optimization decisions argedd into a database. This
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Fig. 5. Execution times for subroutineesi d of benchmarkrgr i d during run-time optimization

facility can be used for across-runs iterative optimizatidhere are two cases where
this approach is practical. First, some applications mayikeixsimilar performance
across multiple data sets, providing key parameters dohmetge (e.g., matrix dimen-
sions do not change, but matrix values do); second, even weeperformance of a
code section varies with the data set, it is likely that a feuirizations will be able
to achieve good results for a large range of data sets. Indaxtbs, run-time iterative
optimization can speed up optimization space search: atgeieof optimizations is
evaluated during each run, progressively converging tdo#st optimization.

In the second case, our technique allows to create selfiguprograms which adjust
to the current data set, within a production run. This methmadothly adapts the pro-
gram to maximize performance, unlike static cloning teghies that specialize function
to input parameters using decision trees and often failteectly associate performance
anomalies with the right version. Assuming the optimizetsians known to perform
best (in general, for multiple benchmarks) have been pssively learned across pre-
vious runs and data sets, one can implement a self-tuning lopgelecting only a few
of those versions. Even if some of the selected versionoparpoorly, they do not
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really affect overall execution time since convergenceuogcjuickly and most of the
execution time is spent within the best ones.

3 Dynamic Stability Prediction

The two key difficulties with dynamic iterative optimizati@re how to evaluate mul-
tiple optimization options at run-time and when can they ba&leated. This section
tackles the second problem by detecting and predictindestelgions of the program
where optimizations may be evaluated.

3.1 Performance stability and phases

As mentioned in the introduction, multiple studies [37, 83le highlighted that pro-
grams exhibiphasesi.e., performance can remain stable for many millionsingtons
and performance patterns can recur within the program dixeciPhase analysis is now
extensively used for selecting sampling intervals in pssoe architecture simulation,
such as in SimPoint [33]. More recently, phase-based aisahgs been used to tune
program power optimizations by dynamically adapting siziisl and L2 caches [23].
For iterative optimization, phases mean that the perforeafa given code section
will remain stable for multiple consecutive or periodic enéons of that code section.
One can take advantage of this stability to compare thetaffemultiple different op-
timization options. For instance, assuming one knows thatdonsecutive executions
FE1 and E2 of a code section will exhibit the same performar¢eone can collecP
in E1, apply a program transformation to the code section, anéadts performance
P’ in E2; by comparingP and P’, one can decide if the program transformation is
useful. Obviously, this comparison makes sense onllifand E2 exhibit the same
baseline performance, i.e., if E1 and £2 belong to the same phase. So, the key is
to detect when phases occur, i.e., where are the regionsiddtitical baseline per-
formance. Also, IPC may not always be a sufficient perforneanetric, because some
program transformations may increase or reduce the nuniliesteuctions, such as un-
rolling or scalar promotion. Therefore, we monitor not oplgrformance stability but
also execution time stability across calls, depending erptiogram transformations.
Figures 6 and 1 illustrate IPC and execution time stabilityree representative sub-
routine for 5 SpecFP2000 benchmarks by showing variationssa calls to the same
subroutine. These benchmarks are selected to demonstiadeiy representative be-
havior for floating point programs. For instance, taepl u subroutine has a stable
performance across all calls except for the first one;ghkgel subroutine has pe-
riodic performance changes with 5 shifts during overalleexsn; theequake most
time-consuming section exhibits unstable performanc@%rcalls and then becomes
stable; thepsi subroutine has a stable performance across all calls;yfjtadimgr i d
subroutine exhibits periodic stable performance.

Detecting stability For the moment, we do not consider program transformatims,
two instances are compared solely using IPC. We then simglinel stability by 3
consecutive or periodic code section execution instandtbstiae same IPC. Naturally,
this stability characterization is speculative, the 4ttamce performance may vary, but
in practice as graphs in Figure 6 suggest, stability reggsadong and regular enough
so that the probability of incorrect stability detectionsigs rate) is fairly low.
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Fig. 6. Execution time and IPC for one representative subroutimeopachmark (across calls)

Note however, that the occurrence of a phase (an executitanioe with a given
performance) is only detectexdter it has occurred, i.e., when the counter value is col-
lected and the code section instance already executedariges in the calling context
occur faster than the evaluation of a new optimization apttbere may not be long
enough consecutive executions with stable performanceesare the impact of the
optimization. Therefore, it is not sufficient teactto phase changes: within a phase, it
is necessary to detect tlength of consecutive region$stable performance and poe-
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Application| Code |PhasesHits|Misseg Miss
sectiong rate

nogrid a 1 1924 27|0.014
b 1 998 1/0.001

appl u a 1 348 0 0
b 2 349 0 0

c 2 349 0 0

d 1 350 0 0

e 1 350 0 0

gal gel a 2 86 12/0.140
b 2 83 1410.169

equake a 2 |3853 1{0.000
apsi a 1 69 0 0
b 1 69 0 0

c 1 69 0 0

d 1 69 0 0

e 1 70 0 0

f 1 69 0 0

Table 1. Number of phases, phase prediction hits and misses per ewtiers for each applica-
tion.

dict their occurrence. Fortunately, Figure 6 shows that phasas to recur regularly,
especially in scientific applications which usually havegie control flow behavior,
which is further confirmed by other broader experiments [38]

To predict the occurrence of regular phases, for each im&nted code section,
we store the performance measurement along with the nunilzadle exhibiting the
same performance (phase length) in a Phase Detection adidtitne Table (PDPT) as
shown in Figure 7. If a performance variation occured, weckhbe table to see if a
phase with such behavior already occurred, and if so, weralsord the distance (in
number of calls) since it occurred. At the third occurrentthe same performance be-
havior, we conclude the phase becomes stable and recutaniggie., with a fixed pe-
riod, and we can predict its next occurrence. Then, progranstormations are applied
to the code section, and the performance effects are onlypaoed within the same
phase, i.e., for the same baseline performance, avoidingset the search each time
the phase changes. The length parameter indicates whemhase will change. Thus,
the transformation space is searched independently fqrhelbes of a code section.
This property has the added benefit of allowing per-phasenigstion, i.e., converging
towards different optimizations for different phases af #ame code section.

Table 1 shows how the phase prediction scheme performs.dihe high regularity
of scientific applications, our simple phase predictioresoh has a miss rate lower than
1.4% in most of the cases, except fgal gel which exhibits miss rates df4% and
17% for two time-consuming subroutines. Also, note that we assditwo performance
measurements were identical provided they differ by leas th threshold determined
by observed measurement error, of the ord&¥%fwith our experimental environment.



10 Grigori Fursin et al.

3.2 Compiler instrumentation

Since, program transformations target specific code sextiphase detection should
target code sections rather than the whole program. In daderonitor code sections
performance, we instrument a code section, e.g., a looparestfunction, with per-
formance counter calls from the hardware counters PAP&tibrFigure 4 shows an
example instrumentation at the subroutine/function lIéeehygri d (Fortran 77) and
itsr esi d subroutine. Figure 7 shows the details of our instrumermati

Each instrumented code section gets a unique identifierpafate and after each
section, monitoring routingsi ner _st art andt i mer _st op are called. These rou-
tines record the number of cycles and number of instructiorsompute the IPC (the
first argument is the unique identifier of the section). At shene timet i mer _st op
detects phases and stability, andmer _st art decides which optimization option
should be evaluated next and returns varidb&LECT to branch to the appropriate
optimization option (versioning), see tBOTO statement.

Instrumentation is currently applied before and after #éfanctions and the outer
loops of all loop nests with depth 2 or more (though the apghasnaturally useful for
the most time-consuming loop nests and functions only)eMoat instrumented loop
nests can themselves contain subroutine calls to evalnlinég; however we forbid
nested instrumentations, so we systematically remove (mggumentations if nested
calls correspond to loop nests.

4 Evaluating Optimizations

Once a stable period has been detected we need a mechanistuaieprogram trans-
formations and evaluate their worth.

4.1 Comparing optimization options

As soon as performance stability is observed, the evaluatfcoptimization options
starts. A new optimization option is said to be evaluateg after 2 consecutive execu-
tions with the same performance. The main issue is to conthindetection of phases
with the evaluation of optimizations, because, if the phdetection scheme does not
predict that a new phase starts, baseline performance kalhge, and we would not
know whether performance variations are due to the optitiwimaption being evalu-
ated or to a new phase.

In order to verify the prediction, the instrumentation rioet periodically checks
whether baseline performance has changed (and in the gratesonitors the occur-
rence of new phases). After any optimization option evabmai.e., after 2 consecutive
executions of the optimized version with the same perforceatie code switches back
to the original code section for two additional iteratio$e first iteration is ignored
to avoid transition effects because it can be argued thgtréagous optimized version
of the code section can have performance side-effects thaithgkew the performance
evaluation of the next iteration (the original code sectidtowever, we did not find
empirical evidence of such side-effects; most likely beeacode sections have to be
long enough that instrumentation and start-up induces@nkgligible overhead. If the
performance of the second iteration is similar to the ihibaseline performance, the
effect of the current option is validated and further op#ation options evaluation re-
sumes. Therefore, evaluating an optimization option nexguét least 4 executions of a
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given code section (2 for detecting optimization perforoestability and 2 for check-
ing baseline performance). For example, see the groupsioklblars in Figure 5a of the
motivation section (on benchmanigr i d). If the baseline performance is later found
to differ, the optimization search for this other phase staged (or started if it is the
first occurrence of that phasg).

Practically, the Phase Detection and Prediction Table (B3Rown in Figure 7
holds information about phases and their current state¢tien and prediction), new
option evaluation or option validation (stability check)also records the best option
found for every phase.

4.2 Multiple evaluations at run-time

if this call should be within phase:
call original call new

section for or section for If the current call should be within phase (look u|

stability check  evaluation PDPT), then either select original code during

T timer_start phase detection/stability test or select new cod
sections for iterative optimizations

Y
save current time and number 01

instructions executed

) 7 PDPT (Phase Detection and Prediction Table)
stability test ’ selection of the
LT - new code section time | IPC | call | period | length| hits| misse stafe besf
V’ if stability option

original original

time consuming time consuming code section

| transformed

code section code section

calculate time spent in the code Look up currentime andIPC in thePDPT;
section and IPC; detect phases afhd timer stop find the same time & IPC and update period &
check stability; select new code - length or add new phase parameters
for the following execution

—

original code instrumented code¢

Fig. 7. Code instrumentation for run-time adaptive iterative aptations.

Many optimizations are parameterized, e.g., tile size golifactor. However, in
the context of run-time iterative optimization, whetheanlging a parameter just means
changing a program variable (e.g., a parametric tile s@e)hanging the code structure
(e.g., unroll factor) matters. The former type of optimieatcan be easily verified by
updating the parameter variable. In order to accommodatdatiter type of complex
optimizations, we use versioning: we generate and optimifferently multiple ver-
sions of the same code section (usually a subroutine or arlesy), plus the additional
control/switching code driven by the monitoring routinesi®wn in Figures 7 and 4,
using the EKOPath compiler.

The main drawback of versioning is obviously increased &ze. While this issue
matters for embedded applications, it should not be a seimonvenience for desktop
applications, provided the number of optimization optitsot excessive. Considering

2 Note that it isrestartednot reset
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only one subroutine or loop nest version will be active at amg, even the impact of
versioning on instruction cache misses is limited. Howgdepending on what run-
time adaptation is used for, the number of versions can vesgtly. If it is used for
evaluating a large number of program transformationsyidiclg across runs, the greater
the number of versions the better, and the only limitatiothéscode size increase. If it
is used for creating self-adjusting codes that find the betbw for the current run, it
is best to limit the number of options, because if many ogtijparform worse than the
original version, the overall performance may either ddgrar marginally improve. In
our experiments, we limited the number of versions to 16.

This versioning scheme is simple but has practical benéfitsigside the optimized
versions generated by the compiler, the user can add suesutr loop nests modified
by hand, and either test them as is or combine them with cemgtimizations. User-
suggested program transformations can often serve amgtpdints of the optimization
search, and recent studies [15, 42] highlight the key rcdggyd by well selected starting
points, adding to the benefit of combined optimizations. &wer, another study [13]
suggests that iterative optimization should not be resii¢co program transformation
parameter tuning, but should expand to selecting progranstormations themselves,
beyond the strict composition order imposed by the compilersioning is a simple
approach for testing a variety of program transformatiamspositions.

5 Experiments

The goal of this article is to speedup the evaluation of ojatition options, rather than
to speedup programs themselves. Still, we later reportrarogspeedups to highlight
that the run-time overhead has no significant impact on rogserformance, that the
run-time performance analysis strategy is capable of 8etgappropriate and efficient
optimization options, and that it can easily accommodaté raditional compiler-
generated program transformations and user-defined agfbgcam transformations.

5.1 Methodology

Platforms and tools.All experiments are conducted on an Intel Pentium 4 Northidvoo
(ID9) Core at 2.4GHz (bus frequency of 533MHz), the L1 caché-ivay 8KB, the L2
cacheis 8-way 512KB, and 512MB of memory; the O/S is Linux E3SL. We use the
latest PAPI hardware counter library [30] for program instientation and performance
measurements. All programs are compiled with the openesdaKOPath 2.0 compiler
and -Ofast flag [32], which, in average, performs similambetter than the Intel 8.1
compiler for Linux.

Compiler-generated program transformations are applksguguhe EKOPath com-
piler. We have created an EKOPath API that triggers programsformations, using
the compiler’s optimization strategy as a starting poiram®lementing the compiler
strategy with iterative search enables to test a large sermbinations of transforma-
tions such as inlining, local padding, loop fusion/fissimop interchange, loop/register
tiling, loop unrolling and prefetching.

Target benchmarks. We considered five representative SpecFP2000 benchmarks
with different behavior, as shown in Figure 6gri d, appl u, gal gel , equake,
apsi ), using ther ef data sets. We apply optimization only on the most-time con-
suming sections of these benchmarks. We handpicked theéles tased on the study
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by Parello et al. [31] which suggests which SpecFP2000 beadks have the best po-
tential for improvement (on an Alpha 21264 platform, thouddince the role of seed
points in iterative search has been previously highlighted?2], we also used the latter
study as an indication for seed points, i.e., initial pofotsa space search.

5.2 Results

This section shows that the full power of iterative optinti@aa can be achieved at the
cost of profile-directed optimization: one or two runs of le&@enchmark are sufficient
to discover the best optimization options for every phase.

Application Max. number of Number of Code sizelnstrumentation
potential evaluationgoptions evaluatedincrease (times overhead

ngrid 699 32 4.3 0%
appl u 430 80 5.5 0.01%
gal gel 32 32 2.6 0.01%
equake 962, 16 2.5 13.17%
apsi 96 96 5.3 0%

Table 2. Maximum number of potential evaluations or iterative shapeedup vs. the real num-
ber of options evaluated during single execution and the@ated overhead.

galgel equake
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Fig. 9. Speedups of instrumented program
Fig. 8. Execution time variations of the over original program after first run, second
r esi d subroutine of thergr i d benchmark run or if the best option is selected from the
over iterations (subroutine calls). start.

Boosting search rate For each benchmark, Table 2 shows the actual number of evalu-
ated options, which is the number of versions multipliedisytumber of instrumented
code sections and by the number of phases with significacuéieoa time.

However, the maximum number of potential optimization op$ (program trans-
formations or compositions of program transformationsgit tten be evaluated during
one execution of a benchmark can be much higher dependinigeoapplication be-
havior. Thanks to run-time adaptation it is now possible talgate 32 to 962 more
optimization options than through traditional acrosssriterative optimization. The
discrepancy among maximum number of evaluations is exptaby the differences
in phase behavior of programs and in the instrumentatiocepheent. If the instrumen-
tation is located at a lower loop nest level, it enables atgreaumber of evaluations
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but it can also induce excessive overhead and may limit egiple transformations. On
the other hand, instrumentation at a higher level enablespaktrum of complex se-
quences of transformations but can limit the number of p@kevaluations during one
execution. For example, the number of potential optimiravaluations is small for
gal gel due to chaotic behavior and frequent performance misptiedi, and is high
for equake due to relatively low level instrumentation.

To quantify the instrumentation overhead, the last columFable 2 shows the ratio
of the execution time of the instrumented program over thgiral program, assuming
all optimization options are replaced with exact copieshefariginal code section. As
a result, this ratio only measures the slowdown due to instntation. The overhead is
negligible for 4 out of 5 benchmarks, and reach&%, for equake. Note however that
equake still achieves one of the best speedups.@tas shown in Figure 9.

Finally, Table 2 shows the code size increase after the progmstrumentation. In
all cases it is modest, and the expansion factor is condijesenaller than the number
of optimization versions we evaluate at run-time. This isilgaexplained by observing
that time-consuming sections are generally small in sifiemodes. Furthermore, for
self-tuning applications which will retain only a few vessis with the best optimiza-
tions, their code size increase should not be significant.

Self-tuned speedupFor each selected benchmark we have created a self-tuning pr
gram with 16 versions of each most time consuming sectiotisasie benchmarks. For
each of these versions we applied either combinations opdergenerated program
transformations or manual program transformations sugddsy Parello et al. [31] for
the Alpha platform, or combinations of both:

— Compiler-generated transformations were obtained thrauwy EKOPath compiler
API, using randomly selected parameters (this API wrapsiratl compiler phases
to allow external control on transformations such as logidn/fission, loop inter-
change, loop and register tiling, loop unrolling and preffiéng on any part of the
code).

— We manually optimized the code wherever the EKOPath comifailed to apply a
transformation as directed through the API (due to intelingdtations or to consa-
vative static analysis information), or whenever unsupgmbtransformations were
required.

The overall number of evaluations per each benchmark vénoed 16 to 96 depending
on the number of most-time consuming sections, as showibia 2a

Figure 8 shows an example of execution time variations fettiple-nested loop in
ther esi d subroutine of thergr i d benchmark for each option evaluation all within
one execution of this program. The baseline performandei#’s in a straight gray line
and the best version is found at iteration 13. The final begieece of transformations
for the loop in the subroutineesi d is loop tiling with tile size 60, loop unrolling
with factor 16 and prefetching switched off. The best par@mssfound for subroutine
psi nv of the same benchmark are 9 for loop tiling and 14 for loop Uimg. Note
also that the static algorithm of the EKOPath compiler ssgggeunrolling factors of 2
for loops of both subroutines. This factor is a kind of trafi@alue across all possible
data sets, while the self-tuning code converged towardfardift value dynamically. It
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is important to note that this adjustment occurred at roretiduring a single run, and
that the optimization was selected soon enough to impraegimainder of the run.

Figure 9 shows the speedups obtained for all benchmarkstafbeexecutions as
well as the speedups assuming there is no instrumentatietnead and the best op-
timization option is used from the start; speedups vary flof0 to 1.72. The differ-
ence in the speedups between successive runs of the ajplidaipends mainly on
the percentage of overall execution time spent evaluatifigrent options. Naturally,
the higher the ratio of the maximum number of potential extiins to the number
of real evaluations, the faster the convergence to the mabperformance level. The
difference in the speedups achived using our new techniqdendnen selecting the
best option from the start depends on the quality of our pdagection and prediction
scheme. This difference is quite high fgal gel due to frequent performance mis-
predictions and foequake due to relatively low level instrumentation. This suggests
further improvements are needed for our performance #gbiétection scheme. It is
also interesting to note that, though the manual transfbomswere designed for a
different architecture (Alpha 21264), for 4 out of 5 benchksathey were eventually
adjusted through transformation parameter tuning to owgetaarchitecture, and still
perform well. In other terms, beyond performance improvetwn a single platform,
self-adjusting codes also provide a form of cross-platfporiability by selecting the
optimization option best suited for the new platform.

6 Related Work

Some of the first techniques to select differently optimizesions of code sections are
cloning and multi-versioning [9, 14, 18]. They use simplesien selection mechanisms
according to the input run-time function or loop paramet&wsch techniques are used
to some extent in current compilers but lack flexibility arrégtiction and cannot cope
with various cases where input parameters are too compldiffer while the behavior
of the code section remains the same and vice versa.

To improve cloning effectiveness, many studies defer cagsioning to the run-
time execution. Program hot spots and input/context parermeare detected at run-
time, to drive dynamic recompilation. For example, the Dywasystem [4] can op-
timize streams of native instructions at run-time using tnates and can be easily
implemented inside JIT compilers. Insertion of prefetghinstructions or changing
prefetching distance dynamically depending on hardwarmtsy metrics is presented
in [35].

Dynamic optimization on object code is limited by the lackatistract semantical
information (types, control structures, abstract vagabames). Many run-time tech-
niques thus resort to dynamic code generation and comgilatilulti-stage program-
ming is one general computing paradigm that fits well with diygamic optimization
context [10,41]: it denotes the syntactic and semantic sugglowing a program to
generate another program and execute it, having multippgram levels cooperate
and share data. Multi-stage programming has been appliedaptive optimization
of high-performance applications [12, 5]. Yet these sotevel approaches will only
see a limited applicability to continuous optimization daeun-time compilation over-
head. Alternatively, languages like ‘C [34] (spelled TiCk-a multi-stage extension of
C) emphasize code generation speed: ‘C is based on VCODEy éagt framework to
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produce native code at run-time [20]. To reduce run-timesggeheration overhead, [2]
presents a technique which produces pre-optimized madude templates and later
dynamically patch those templates with run-time constahBAPT [45, 44] applies
high-level optimizations to program hot spots using dyraracompilation in a sepa-
rate process or on a separate workstation and describegaaga to write self-tuned
applications. ADORE [11, 28] uses a sampling-based phaslysis to detect perfor-
mance bottlenecks and apply simple transformations sughedistching dynamically.
Finally, dynamic code regions (DCR) improve on samplingdzhanalysis, focusing
the monitoring on procedure and loops [24] only.

Recently, software-only solutions have been proposedéatifely detect, classify
and predict phase transitions, with very low run-time oearth [4, 19]. In particular,
[19] decouples this detection from the dynamic code geiwralr translation process,
relying on a separate process sampling hardware perforenanmters at a fixed inter-
val. Selection of a good sampling interval is critical, tm@vmissing fine-grain phase
changes while minimizing overhead [33, 36].

In contrast with the above-mentioned projects, our apgrda@ novel combina-
tion of versioning, code instrumentation and softwareygtiase detection to enable
practical iterative evaluation of complex transformati@t run-time. We choose static
versioning rather than dynamic code generation, allowingbverhead adaptability to
program phases and input contexts. Associating staticimgntation and dynamic de-
tection avoids most pitfalls of either isolated instrunatiun-based or sampling-based
phase analyses, including sensitivity to calling cont§43 and sampling interval se-
lection [26]. Finally, we rely on predictive rather than ctige phase detection, although
it is not for the reasons advocated in [19]: we do not have toréime the overhead of
run-time code generation, but we need to predict phase esangmprove the evalua-
tion rate for new optimization options.

7 Conclusions and Perspectives

Several practical issues still prevent iterative optirtimafrom being widely used, the
time required to search the huge program transformatioasespeing one of the main
issues. In this article, we present a method for speedingamhk space pruning by a
factor of 32 to 962 over a set of benchmarks, by taking adggntd the phase behav-
ior (performance stability) of applications. The methadplemented in the EKOPath
compiler, can be readily applied to a large range of apptioat The method has other
benefits: such self-tuned programs facilitate portabiityoss different architectures
and software environments, they can self-adjust at thd tE#vphases and to partic-
ular data sets (as opposed to the trade-off proposed bymntutegative techniques),
they can build a catalog of per-phase appropriate progranstormations (code sec-
tion/performance pairs) across runs, and they can easihyow user-suggested and
compiler-suggested transformations thanks to their @aisg approach.

Future work will include fast analysis of large complex tségsrmation spaces, im-
proving our phase detection and prediction scheme to caphare complex perfor-
mance behaviors for integer and DSP-type benchmarks, apiebinmg the instrumen-
tation placement, especially using self-placement ofimséntation at the most proper
loop nest levels, by instrumenting all loop nests levelsntdlynamically switching off
instrumentation at all levels but one, either using preiibceor versioning again. We are
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currently extending our work to create self-tuning apgimas on embedded systems
where the size of the application is critical and on multiecarchitectures.

AcknowledgmentsGrigori Fursin has been supported by a grant from European Ne
work of Excellence on High-Performance Embedded Architexiand Compilation
(HIPEAC). We would also like to thank all our colleagues aedewers for their com-
ments.

References

1.

10.

11.

12.

13.

14.

15.

L. Almagor, K. D. Cooper, A. Grosul, T. Harvey, S. Reeves Sbbramanian, L. Torczon,
and T. Waterman. Finding effective compilation sequentePBroc. Languages, Compilers,
and Tools for Embedded Systems (LCTpR&yes 231-239, 2004.

. J. Auslander, M. Philipose, C. Chambers, S. J. EggersBaml Bershad. Fast, effective

dynamic compilation. '€onference on Programming Language Design and Implenientat
(PLDI), pages 149-159, 1996.

. J. T. B. Franke, M. O'Boyle and G. Fursin. Probabilistiasze-level optimisation of embed-

ded systems software. W®CM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES'2605.

. V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transpt dynamic optimization

system. INPACM SIGPLAN Notice2000.

. O. Beckmann, A. Houghton, P. H. J. Kelly, and M. Mellor. Rime code generation in

c++ as a foundation for domain-specific optimisationPhoceedings of the 2003 Dagstuhl
Workshop on Domain-Specific Program Generati2®03.

. J. Bilmes, K. Asanovit, C. Chin, and J. Demmel. Optingzimatrix multiply using PHiPAC:

A portable, high-performance, ANSI C coding methodologyPtoc. ICS pages 340-347,
1997.

. F. Bodin, T. Kisuki, P. Knijnenburg, M. O’'Boyle, and E. Rmh Iterative compilation in a

non-linear optimisation space. FProc. ACM Workshop on Profile and Feedback Directed
Compilation 1998. Organized in conjunction with PACT98.

. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. Agtbe programming inter-

face for performance evaluation on modern process®te International Journal of High
Performance Computing Applicatiors4(3):189-204, 2000.

. M. Byler, M. Wolfe, J. R. B. Davies, C. Huson, and B. Leasuvhiltiple version loops. In

ICPP 1987 pages 312-318, 2005.

C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementinulti-stage languages using
ASTs, Gensym, and reflection. WCM SIGPLAN/SIGSOFT Intl. Conf. Generative Pro-
gramming and Component Engineering (GPCE,@#jges 57-76, 2003.

H. Chen, J. Lu, W.-C. Hsu, and P.-C. Yew. Continuous agapbject-code re-optimization
framework. InNinth Asia-Pacific Computer Systems Architecture ConterefACSAC
2004) pages 241-255, 2004.

A. Cohen, S. Donadio, M.-J. Garzaran, C. Herrmann, arfdadua. In search of a program
generator to implement generic transformations for highfgrmance computingScience
of Computer Programmin@006. To appear.

A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, andvakilache. Facilitating the
search for compositions of program transformatio®CM Int. Conf on Supercomputing
(ICS’05), June 2005.

K. D. Cooper, M. W. Hall, and K. Kennedy. Procedure clgnim Proceedings of the 1992
IEEE International Conference on Computer Langugggges 96—105, 1992.

K. D. Cooper, K. Kennedy, and L. Torczon. The impact oéfiptocedural analysis and
optimization in the R programming environment. ACM Transactions on Programming
Languages and Systen®491-523, 1986.



18

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

Grigori Fursin et al.

K. D. Cooper, P. Schielke, and D. Subramanian. OptirgiZar reduced code space us-

ing genetic algorithms. IfProc. Languages, Compilers, and Tools for Embedded Systems

(LCTES) pages 1-9, 1999.

K. D. Cooper, D. Subramanian, and L. Torczon. Adaptiviandping compilers for the 21st
century.J. of Supercomputin@3(1), 2002.

P. Diniz and M. Rinard. Dynamic feedback: An effectivehtaique for adaptive computing.
In Proc. PLDI, pages 71-84, 1997.

E. Duesterwald, C. Cascaval, and S. Dwarkadas. Chamateand predicting program
behavior and its variability. IEEE PACT 2003pages 220-231, 2003.

D. Engler. Vcode: a portable, very fast dynamic code ggimn system. IiProceedings of
PLDI, 1996.

G. Fursin, M. O’'Boyle, and P. Knijnenburg. Evaluatingritive compilation. IrProc.
Languages and Compilers for Parallel Computers (LCRfZges 305-315, 2002.

K. Heydeman, F. Bodin, P. Knijnenburg, and L. Morin. UR@lobal trade-off strategy for
loop unrolling for VLIW architectures. IiProc. Compilers for Parallel Computers (CPC)
pages 59-70, 2003.

S. Hu, M. Valluri, and L. K. John. Effective adaptive cantipg environment management
via dynamic optimization. IHEEE / ACM International Symposium on Code Generation
and Optimization (CGO 20052005.

J. Kim, S. V. Kodakara, W.-C. Hsu, D. J. Lilja, and P.-CwY®ynamic code region (DCR)-
based program phase tracking and prediction for dynamienigations. Inintl. Conf. on
High Performance Embedded Architectures & Compilers (HAREDS5), number 3793 in
LNCS, Barcelona, Spain, Sept. 2005. Springer Verlag.

T. Kisuki, P. Knijnenburg, M. O’'Boyle, and H. Wijshoffterative compilation in program
optimization. InProc. Compilers for Parallel Computers (CPC200pages 35-44, 2000.
J. Lau, S. Schoenmackers, and B. Calder. Transitioreptiassification and prediction. In
International Symposium on High Performance Computer ibacture 2005.

S. Long and G. Fursin. A heuristic search algorithm basednified transformation frame-
work. In 7th International Workshop on High Performance Scientifid &ngineering Com-
puting (HPSEC-05)2005.

J. Lu, H. Chen, P.-C. Yew, and W.-C. Hsu. Design and implgation of a lightweight
dynamic optimization system. [fhe Journal of Instruction-Level Parallelisnaolume 6,
2004.

A. Monsifrot, F. Bodin, and R. Quiniou. A machine leagipproach to automatic produc-
tion of compiler heuristics. liProc. AIMSALNCS 2443, pages 41-50, 2002.

PAPI: A Portable Interface to Hardware Performance @snhttp://icl.cs. ut k. edu/
papi , 2005.

D. Parello, O. Temam, A. Cohen, and J.-M. Verdun. Towasgsiematic, pragmatic and
architecture-aware program optimization process for demprocessors. IRroc. Int. Con-
ference on Supercomputing004.

PathScale EKOPath Compilers: p: / / ww. pat hscal e. com 2005.

E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwoad] B. Calder. Using simpoint
for accurate and efficient simulation. ACM SIGMETRICS the International Conference
on Measurement and Modeling of Computer Syst@®R’3.

M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. KaashoeB.ahd tcc: A language and
compiler for dynamic code generatioACM Trans. Prog. Lang. SysR1(2):324-369, Mar.
1999.

R. H. Saavedra and D. Park. Improving the effectivenéssoftware prefetching with
adaptive execution. I€onference on Parallel Architectures and Compilation Teghes
(PACT’96) 1996.



36

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Lecture Notes in Computer Science 19

. X. Shen, Y. Zhong, and C. Ding. Locality phase predictithACM SIGARCH Computer
Architecture Newspages 165-176, 2004.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. matally characterizing large
scale program behavior. t0th International Conference on Architectural Supportfoo-
gramming Languages and Operating Syste2@92.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. matally characterizing large
scale program behavior. Proceedings of ASPLOS-X002.

M. Stephenson and S. Amarasinghe. Predicting unrdibfaaising supervised classifica-
tion. INIEEE / ACM International Symposium on Code Generation antn@pation (CGO
2005) IEEE Computer Society, 2005.

M. Stephenson, M. Martin, and U. O’Reilly. Meta optintiea: Improving compiler heuris-
tics with machine learning. IRroc. PLDI, pages 77-90, 2003.

W. TahaMulti-Stage Programming: Its Theory and Applicatiof®hD thesis, Oregon Grad-
uate Institute of Science and Technology, Nov. 1999.

S. Triantafyllis, M. Vachharajani, and D. I. August. Qgitar optimization-space explo-
ration. InJournal of Instruction-level Parallelisn2005.

X. Vera, J. Abella, A. Gonzalez, and J. Llosa. Optimizprogram locality through CMEs
and GAs. InProc. PACT pages 68-78, 2003.

M. Voss and R. Eigemann. High-level adaptive progranmapétion with adapt. IPro-
ceedings of the Symposium on Principles and practices aflphprogramming 2001.

M. Voss and R. Eigenmann. Adapt: Automated de-couplegtag program transformation.
In Proc. ICPP, 2000.

R. C. Whaley and J. J. Dongarra. Automatically tunedaliredgebra software. IRroc.
Alliance, 1998.



