" Input: { dict - existing flat dict dict1 - new flat dict to add if empty, no stat analysis (dict_compare) - calculate improvements over this dict if present (skip_expected_value) - if 'yes', do not calculute expected value (skip_min_max) - if 'yes', do not calculate min, max, mean, etc For expected value (via gaussian_kde): (bins) - number of bins (int, default = 100) (cov_factor) - float covariance factor (skip_stat_analysis) - if 'yes', just flatten array and add #min } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 dict - updated dict max_range_percent - max % range in float/int data (useful to record points with unusual behavior) min - 'yes', if one of monitored values reached min max - 'yes', if one of monitored values reached max } "