This collection of CK-powered adaptive containers tests automated, customizable and reproducible Collective Knowledge workflows for OpenVINO workoads.
CK_TAG (Dockerfile 's extension) |
Python | GCC | Comments |
---|---|---|---|
ubuntu-20.04 |
3.8.2 | 9.3.0 |
You will need to install Collective Knowledge to build images and save benchmarking results. Please follow the CK installation instructions and then pull our object detection repository:
$ ck pull repo:ck-mlperf
NB: Refresh all CK repositories after any updates (e.g. bug fixes):
$ ck pull all
To build an image e.g. from Dockerfile.ubuntu-20.04
:
$ export CK_IMAGE=mlperf-inference-v0.7.openvino CK_TAG=ubuntu-20.04
$ cd `ck find docker:$CK_IMAGE` && docker build -t ctuning/$CK_IMAGE:$CK_TAG -f Dockerfile.$CK_TAG .
To run the default command of an image e.g. built from Dockerfile.ubuntu-20.04
:
$ export CK_IMAGE=mlperf-inference-v0.7.openvino CK_TAG=ubuntu-20.04
$ docker run --rm ctuning/$CK_IMAGE:$CK_TAG
...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.242
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.381
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.277
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.031
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.189
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.575
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.224
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.264
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.265
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.036
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.194
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.620
mAP=24.207%