Authors: Nuo Xu,Kian Hsiang Low,Jie Chen,Keng Kiat Lim,Etkin Baris Ozgul
ArXiv: 1404.5165
Document:
PDF
DOI
Abstract URL: http://arxiv.org/abs/1404.5165v2
Central to robot exploration and mapping is the task of persistent
localization in environmental fields characterized by spatially correlated
measurements. This paper presents a Gaussian process localization (GP-Localize)
algorithm that, in contrast to existing works, can exploit the spatially
correlated field measurements taken during a robot's exploration (instead of
relying on prior training data) for efficiently and scalably learning the GP
observation model online through our proposed novel online sparse GP. As a
result, GP-Localize is capable of achieving constant time and memory (i.e.,
independent of the size of the data) per filtering step, which demonstrates the
practical feasibility of using GPs for persistent robot localization and
autonomy. Empirical evaluation via simulated experiments with real-world
datasets and a real robot experiment shows that GP-Localize outperforms
existing GP localization algorithms.