This portal has been archived. Explore the next generation of this technology.

Incorporating Belief Function in SVM for Phoneme Recognition

lib:20fbc04c4fbe5947 (v1.0.0)

Authors: Rimah Amami,Dorra Ben Ayed,Nouerddine Ellouze
ArXiv: 1507.06025
Document:  PDF  DOI 
Abstract URL: http://arxiv.org/abs/1507.06025v1


The Support Vector Machine (SVM) method has been widely used in numerous classification tasks. The main idea of this algorithm is based on the principle of the margin maximization to find an hyperplane which separates the data into two different classes.In this paper, SVM is applied to phoneme recognition task. However, in many real-world problems, each phoneme in the data set for recognition problems may differ in the degree of significance due to noise, inaccuracies, or abnormal characteristics; All those problems can lead to the inaccuracies in the prediction phase. Unfortunately, the standard formulation of SVM does not take into account all those problems and, in particular, the variation in the speech input. This paper presents a new formulation of SVM (B-SVM) that attributes to each phoneme a confidence degree computed based on its geometric position in the space. Then, this degree is used in order to strengthen the class membership of the tested phoneme. Hence, we introduce a reformulation of the standard SVM that incorporates the degree of belief. Experimental performance on TIMIT database shows the effectiveness of the proposed method B-SVM on a phoneme recognition problem.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!