This portal has been archived. Explore the next generation of this technology.

Lower Bounds for Smooth Nonconvex Finite-Sum Optimization

lib:c509a4c5a80af999 (v1.0.0)

Authors: Dongruo Zhou,Quanquan Gu
ArXiv: 1901.11224
Document:  PDF  DOI 
Abstract URL: http://arxiv.org/abs/1901.11224v1


Smooth finite-sum optimization has been widely studied in both convex and nonconvex settings. However, existing lower bounds for finite-sum optimization are mostly limited to the setting where each component function is (strongly) convex, while the lower bounds for nonconvex finite-sum optimization remain largely unsolved. In this paper, we study the lower bounds for smooth nonconvex finite-sum optimization, where the objective function is the average of $n$ nonconvex component functions. We prove tight lower bounds for the complexity of finding $\epsilon$-suboptimal point and $\epsilon$-approximate stationary point in different settings, for a wide regime of the smallest eigenvalue of the Hessian of the objective function (or each component function). Given our lower bounds, we can show that existing algorithms including KatyushaX (Allen-Zhu, 2018), Natasha (Allen-Zhu, 2017), RapGrad (Lan and Yang, 2018) and StagewiseKatyusha (Chen and Yang, 2018) have achieved optimal Incremental First-order Oracle (IFO) complexity (i.e., number of IFO calls) up to logarithm factors for nonconvex finite-sum optimization. We also point out potential ways to further improve these complexity results, in terms of making stronger assumptions or by a different convergence analysis.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!