Authors: Vojtech Mrazek,Muhammad Abdullah Hanif,Zdenek Vasicek,Lukas Sekanina,Muhammad Shafique
ArXiv: 1902.10807
Document:
PDF
DOI
Abstract URL: http://arxiv.org/abs/1902.10807v2
Approximate computing is an emerging paradigm for developing highly
energy-efficient computing systems such as various accelerators. In the
literature, many libraries of elementary approximate circuits have already been
proposed to simplify the design process of approximate accelerators. Because
these libraries contain from tens to thousands of approximate implementations
for a single arithmetic operation it is intractable to find an optimal
combination of approximate circuits in the library even for an application
consisting of a few operations. An open problem is "how to effectively combine
circuits from these libraries to construct complex approximate accelerators".
This paper proposes a novel methodology for searching, selecting and combining
the most suitable approximate circuits from a set of available libraries to
generate an approximate accelerator for a given application. To enable fast
design space generation and exploration, the methodology utilizes machine
learning techniques to create computational models estimating the overall
quality of processing and hardware cost without performing full synthesis at
the accelerator level. Using the methodology, we construct hundreds of
approximate accelerators (for a Sobel edge detector) showing different but
relevant tradeoffs between the quality of processing and hardware cost and
identify a corresponding Pareto-frontier. Furthermore, when searching for
approximate implementations of a generic Gaussian filter consisting of 17
arithmetic operations, the proposed approach allows us to identify
approximately $10^3$ highly important implementations from $10^{23}$ possible
solutions in a few hours, while the exhaustive search would take four months on
a high-end processor.