Authors: Alessandro Sordoni,Yoshua Bengio,Hossein Vahabi,Christina Lioma,Jakob G. Simonsen,Jian-Yun Nie
ArXiv: 1507.02221
Document:
PDF
DOI
Artifact development version:
GitHub
Abstract URL: http://arxiv.org/abs/1507.02221v1
Users may strive to formulate an adequate textual query for their information
need. Search engines assist the users by presenting query suggestions. To
preserve the original search intent, suggestions should be context-aware and
account for the previous queries issued by the user. Achieving context
awareness is challenging due to data sparsity. We present a probabilistic
suggestion model that is able to account for sequences of previous queries of
arbitrary lengths. Our novel hierarchical recurrent encoder-decoder
architecture allows the model to be sensitive to the order of queries in the
context while avoiding data sparsity. Additionally, our model can suggest for
rare, or long-tail, queries. The produced suggestions are synthetic and are
sampled one word at a time, using computationally cheap decoding techniques.
This is in contrast to current synthetic suggestion models relying upon machine
learning pipelines and hand-engineered feature sets. Results show that it
outperforms existing context-aware approaches in a next query prediction
setting. In addition to query suggestion, our model is general enough to be
used in a variety of other applications.