Defining Relative Likelihood in Partially-Ordered Preferential Structures

lib:0aa8fe4fb9dae066 (v1.0.0)

Authors: Joseph Y. Halpern
ArXiv: 1407.7180
Document:  PDF  DOI 
Abstract URL: http://arxiv.org/abs/1407.7180v1


Starting with a likelihood or preference order on worlds, we extend it to a likelihood ordering on sets of worlds in a natural way, and examine the resulting logic. Lewis (1973) earlier considered such a notion of relative likelihood in the context of studying counterfactuals, but he assumed a total preference order on worlds. Complications arise when examining partial orders that are not present for total orders. There are subtleties involving the exact approach to lifting the order on worlds to an order on sets of worlds. In addition, the axiomatization of the logic of relative likelihood in the case of partial orders gives insight into the connection between relative likelihood and default reasoning.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!