Network entity characterization and attack prediction

lib:0c6da112e4c6db60 (v1.0.0)

Authors: Vaclav Bartos,Martin Zadnik,Sheikh Mahbub Habib,Emmanouil Vasilomanolakis
ArXiv: 1909.07694
Document:  PDF  DOI 
Abstract URL: https://arxiv.org/abs/1909.07694v1


The devastating effects of cyber-attacks, highlight the need for novel attack detection and prevention techniques. Over the last years, considerable work has been done in the areas of attack detection as well as in collaborative defense. However, an analysis of the state of the art suggests that many challenges exist in prioritizing alert data and in studying the relation between a recently discovered attack and the probability of it occurring again. In this article, we propose a system that is intended for characterizing network entities and the likelihood that they will behave maliciously in the future. Our system, namely Network Entity Reputation Database System (NERDS), takes into account all the available information regarding a network entity (e. g. IP address) to calculate the probability that it will act maliciously. The latter part is achieved via the utilization of machine learning. Our experimental results show that it is indeed possible to precisely estimate the probability of future attacks from each entity using information about its previous malicious behavior and other characteristics. Ranking the entities by this probability has practical applications in alert prioritization, assembly of highly effective blacklists of a limited length and other use cases.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!