Check the preview of 2nd version of this platform being developed by the open MLCommons taskforce on automation and reproducibility as a free, open-source and technology-agnostic on-prem platform.

A Chasm Between Identity and Equivalence Testing with Conditional Queries

lib:138ead4a02839673 (v1.0.0)

Authors: Jayadev Acharya,Clément L. Canonne,Gautam Kamath
ArXiv: 1411.7346
Document:  PDF  DOI 
Abstract URL:

A recent model for property testing of probability distributions (Chakraborty et al., ITCS 2013, Canonne et al., SICOMP 2015) enables tremendous savings in the sample complexity of testing algorithms, by allowing them to condition the sampling on subsets of the domain. In particular, Canonne, Ron, and Servedio (SICOMP 2015) showed that, in this setting, testing identity of an unknown distribution $D$ (whether $D=D^\ast$ for an explicitly known $D^\ast$) can be done with a constant number of queries, independent of the support size $n$ -- in contrast to the required $\Omega(\sqrt{n})$ in the standard sampling model. It was unclear whether the same stark contrast exists for the case of testing equivalence, where both distributions are unknown. While Canonne et al. established a $\mathrm{poly}(\log n)$-query upper bound for equivalence testing, very recently brought down to $\tilde O(\log\log n)$ by Falahatgar et al. (COLT 2015), whether a dependence on the domain size $n$ is necessary was still open, and explicitly posed by Fischer at the Bertinoro Workshop on Sublinear Algorithms (2014). We show that any testing algorithm for equivalence must make $\Omega(\sqrt{\log\log n})$ queries in the conditional sampling model. This demonstrates a gap between identity and equivalence testing, absent in the standard sampling model (where both problems have sampling complexity $n^{\Theta(1)}$). We also obtain results on the query complexity of uniformity testing and support-size estimation with conditional samples. We answer a question of Chakraborty et al. (ITCS 2013) showing that non-adaptive uniformity testing indeed requires $\Omega(\log n)$ queries in the conditional model. For the related problem of support-size estimation, we provide both adaptive and non-adaptive algorithms, with query complexities $\mathrm{poly}(\log\log n)$ and $\mathrm{poly}(\log n)$, respectively.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives


Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!