User-generated data is crucial to predictive modeling in many applications.
With a web/mobile/wearable interface, a data owner can continuously record data
generated by distributed users and build various predictive models from the
data to improve their operations, services, and revenue. Due to the large size
and evolving nature of users data, data owners may rely on public cloud service
providers (Cloud) for storage and computation scalability. Exposing sensitive
user-generated data and advanced analytic models to Cloud raises privacy
concerns. We present a confidential learning framework, SecureBoost, for data
owners that want to learn predictive models from aggregated user-generated data
but offload the storage and computational burden to Cloud without having to
worry about protecting the sensitive data. SecureBoost allows users to submit
encrypted or randomly masked data to designated Cloud directly. Our framework
utilizes random linear classifiers (RLCs) as the base classifiers in the
boosting framework to dramatically simplify the design of the proposed
confidential boosting protocols, yet still preserve the model quality. A
Cryptographic Service Provider (CSP) is used to assist the Cloud's processing,
reducing the complexity of the protocol constructions. We present two
constructions of SecureBoost: HE+GC and SecSh+GC, using combinations of
homomorphic encryption, garbled circuits, and random masking to achieve both
security and efficiency. For a boosted model, Cloud learns only the RLCs and
the CSP learns only the weights of the RLCs. Finally, the data owner collects
the two parts to get the complete model. We conduct extensive experiments to
understand the quality of the RLC-based boosting and the cost distribution of
the constructions. Our results show that SecureBoost can efficiently learn
high-quality boosting models from protected user-generated data.