We are very excited to join forces with MLCommons and OctoML.ai! Contact Grigori Fursin for more details!

Effective weakly supervised semantic frame induction using expression sharing in hierarchical hidden Markov models

lib:1461fa8b5e2068f4 (v1.0.0)

Vote to reproduce this paper and share portable workflows   1 
Authors: Janneke van de Loo,Jort F. Gemmeke,Guy De Pauw,Bart Ons,Walter Daelemans,Hugo Van hamme
ArXiv: 1901.10680
Document:  PDF  DOI 
Artifact development version: GitHub
Abstract URL: http://arxiv.org/abs/1901.10680v1


We present a framework for the induction of semantic frames from utterances in the context of an adaptive command-and-control interface. The system is trained on an individual user's utterances and the corresponding semantic frames representing controls. During training, no prior information on the alignment between utterance segments and frame slots and values is available. In addition, semantic frames in the training data can contain information that is not expressed in the utterances. To tackle this weakly supervised classification task, we propose a framework based on Hidden Markov Models (HMMs). Structural modifications, resulting in a hierarchical HMM, and an extension called expression sharing are introduced to minimize the amount of training time and effort required for the user. The dataset used for the present study is PATCOR, which contains commands uttered in the context of a vocally guided card game, Patience. Experiments were carried out on orthographic and phonetic transcriptions of commands, segmented on different levels of n-gram granularity. The experimental results show positive effects of all the studied system extensions, with some effect differences between the different input representations. Moreover, evaluation experiments on held-out data with the optimal system configuration show that the extended system is able to achieve high accuracies with relatively small amounts of training data.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!