Check the preview of 2nd version of this platform being developed by the open MLCommons taskforce on automation and reproducibility as a free, open-source and technology-agnostic on-prem platform.

Naive Gabor Networks for Hyperspectral Image Classification

lib:14a5c8f07f4d6008 (v1.0.0)

Authors: Chenying Liu,Jun Li,Lin He,Antonio J. Plaza,Shutao Li,Bo Li
ArXiv: 1912.03991
Document:  PDF  DOI 
Abstract URL: https://arxiv.org/abs/1912.03991v2


Recently, many convolutional neural network (CNN) methods have been designed for hyperspectral image (HSI) classification since CNNs are able to produce good representations of data, which greatly benefits from a huge number of parameters. However, solving such a high-dimensional optimization problem often requires a large amount of training samples in order to avoid overfitting. Additionally, it is a typical non-convex problem affected by many local minima and flat regions. To address these problems, in this paper, we introduce naive Gabor Networks or Gabor-Nets which, for the first time in the literature, design and learn CNN kernels strictly in the form of Gabor filters, aiming to reduce the number of involved parameters and constrain the solution space, and hence improve the performances of CNNs. Specifically, we develop an innovative phase-induced Gabor kernel, which is trickily designed to perform the Gabor feature learning via a linear combination of local low-frequency and high-frequency components of data controlled by the kernel phase. With the phase-induced Gabor kernel, the proposed Gabor-Nets gains the ability to automatically adapt to the local harmonic characteristics of the HSI data and thus yields more representative harmonic features. Also, this kernel can fulfill the traditional complex-valued Gabor filtering in a real-valued manner, hence making Gabor-Nets easily perform in a usual CNN thread. We evaluated our newly developed Gabor-Nets on three well-known HSIs, suggesting that our proposed Gabor-Nets can significantly improve the performance of CNNs, particularly with a small training set.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!