Authors: Robert Maier,Raphael Schaller,Daniel Cremers
ArXiv: 1709.03763
Document:
PDF
DOI
Abstract URL: http://arxiv.org/abs/1709.03763v1
State-of-the-art methods for large-scale 3D reconstruction from RGB-D sensors
usually reduce drift in camera tracking by globally optimizing the estimated
camera poses in real-time without simultaneously updating the reconstructed
surface on pose changes. We propose an efficient on-the-fly surface correction
method for globally consistent dense 3D reconstruction of large-scale scenes.
Our approach uses a dense Visual RGB-D SLAM system that estimates the camera
motion in real-time on a CPU and refines it in a global pose graph
optimization. Consecutive RGB-D frames are locally fused into keyframes, which
are incorporated into a sparse voxel hashed Signed Distance Field (SDF) on the
GPU. On pose graph updates, the SDF volume is corrected on-the-fly using a
novel keyframe re-integration strategy with reduced GPU-host streaming. We
demonstrate in an extensive quantitative evaluation that our method is up to
93% more runtime efficient compared to the state-of-the-art and requires
significantly less memory, with only negligible loss of surface quality.
Overall, our system requires only a single GPU and allows for real-time surface
correction of large environments.