Authors: Jiaying Gu,Fei Fu,Qing Zhou
ArXiv: 1403.2310
Document:
PDF
DOI
Abstract URL: http://arxiv.org/abs/1403.2310v4
Bayesian networks, with structure given by a directed acyclic graph (DAG),
are a popular class of graphical models. However, learning Bayesian networks
from discrete or categorical data is particularly challenging, due to the large
parameter space and the difficulty in searching for a sparse structure. In this
article, we develop a maximum penalized likelihood method to tackle this
problem. Instead of the commonly used multinomial distribution, we model the
conditional distribution of a node given its parents by multi-logit regression,
in which an edge is parameterized by a set of coefficient vectors with dummy
variables encoding the levels of a node. To obtain a sparse DAG, a group norm
penalty is employed, and a blockwise coordinate descent algorithm is developed
to maximize the penalized likelihood subject to the acyclicity constraint of a
DAG. When interventional data are available, our method constructs a causal
network, in which a directed edge represents a causal relation. We apply our
method to various simulated and real data sets. The results show that our
method is very competitive, compared to many existing methods, in DAG
estimation from both interventional and high-dimensional observational data.