Authors: Daniel Haehn,Verena Kaynig,James Tompkin,Jeff W. Lichtman,Hanspeter Pfister
Where published:
CVPR 2018 6
ArXiv: 1704.00848
Document:
PDF
DOI
Abstract URL: http://arxiv.org/abs/1704.00848v1
Automatic cell image segmentation methods in connectomics produce merge and
split errors, which require correction through proofreading. Previous research
has identified the visual search for these errors as the bottleneck in
interactive proofreading. To aid error correction, we develop two classifiers
that automatically recommend candidate merges and splits to the user. These
classifiers use a convolutional neural network (CNN) that has been trained with
errors in automatic segmentations against expert-labeled ground truth. Our
classifiers detect potentially-erroneous regions by considering a large context
region around a segmentation boundary. Corrections can then be performed by a
user with yes/no decisions, which reduces variation of information 7.5x faster
than previous proofreading methods. We also present a fully-automatic mode that
uses a probability threshold to make merge/split decisions. Extensive
experiments using the automatic approach and comparing performance of novice
and expert users demonstrate that our method performs favorably against
state-of-the-art proofreading methods on different connectomics datasets.