We are very excited to join forces with MLCommons and OctoML.ai! Contact Grigori Fursin for more details!

Fast Implementation of Morphological Filtering Using ARM NEON Extension

lib:3e4e98ab6f4d9e93 (v1.0.0)

Authors: Elena Limonova,Arseny Terekhin,Dmitry Nikolaev,Vladimir Arlazarov
ArXiv: 2002.09474
Document:  PDF  DOI 
Abstract URL: https://arxiv.org/abs/2002.09474v1


In this paper we consider speedup potential of morphological image filtering on ARM processors. Morphological operations are widely used in image analysis and recognition and their speedup in some cases can significantly reduce overall execution time of recognition. More specifically, we propose fast implementation of erosion and dilation using ARM SIMD extension NEON. These operations with the rectangular structuring element are separable. They were implemented using the advantages of separability as sequential horizontal and vertical passes. Each pass was implemented using van Herk/Gil-Werman algorithm for large windows and low-constant linear complexity algorithm for small windows. Final implementation was improved with SIMD and used a combination of these methods. We also considered fast transpose implementation of 8x8 and 16x16 matrices using ARM NEON to get additional computational gain for morphological operations. Experiments showed 3 times efficiency increase for final implementation of erosion and dilation compared to van Herk/Gil-Werman algorithm without SIMD, 5.7 times speedup for 8x8 matrix transpose and 12 times speedup for 16x16 matrix transpose compared to transpose without SIMD.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!