In recent years, graph theory has been widely employed to probe several
language properties. More specifically, the so-called word adjacency model has
been proven useful for tackling several practical problems, especially those
relying on textual stylistic analysis. The most common approach to treat texts
as networks has simply considered either large pieces of texts or entire books.
This approach has certainly worked well -- many informative discoveries have
been made this way -- but it raises an uncomfortable question: could there be
important topological patterns in small pieces of texts? To address this
problem, the topological properties of subtexts sampled from entire books was
probed. Statistical analyzes performed on a dataset comprising 50 novels
revealed that most of the traditional topological measurements are stable for
short subtexts. When the performance of the authorship recognition task was
analyzed, it was found that a proper sampling yields a discriminability similar
to the one found with full texts. Surprisingly, the support vector machine
classification based on the characterization of short texts outperformed the
one performed with entire books. These findings suggest that a local
topological analysis of large documents might improve its global
characterization. Most importantly, it was verified, as a proof of principle,
that short texts can be analyzed with the methods and concepts of complex
networks. As a consequence, the techniques described here can be extended in a
straightforward fashion to analyze texts as time-varying complex networks.