Authors: Francesco Bonanno,Giacomo Capizzi,Christian Napoli,Giorgio Graditi,Giuseppe Marco Tina
ArXiv: 1308.2375
Document:
PDF
DOI
Abstract URL: http://arxiv.org/abs/1308.2375v1
The design process of photovoltaic (PV) modules can be greatly enhanced by
using advanced and accurate models in order to predict accurately their
electrical output behavior. The main aim of this paper is to investigate the
application of an advanced neural network based model of a module to improve
the accuracy of the predicted output I--V and P--V curves and to keep in
account the change of all the parameters at different operating conditions.
Radial basis function neural networks (RBFNN) are here utilized to predict the
output characteristic of a commercial PV module, by reading only the data of
solar irradiation and temperature. A lot of available experimental data were
used for the training of the RBFNN, and a backpropagation algorithm was
employed. Simulation and experimental validation is reported.