Check the preview of 2nd version of this platform being developed by the open MLCommons taskforce on automation and reproducibility as a free, open-source and technology-agnostic on-prem platform.

Learning binary or real-valued time-series via spike-timing dependent plasticity

lib:454fa9783c510541 (v1.0.0)

Authors: Takayuki Osogami
ArXiv: 1612.04897
Document:  PDF  DOI 
Abstract URL: http://arxiv.org/abs/1612.04897v1


A dynamic Boltzmann machine (DyBM) has been proposed as a model of a spiking neural network, and its learning rule of maximizing the log-likelihood of given time-series has been shown to exhibit key properties of spike-timing dependent plasticity (STDP), which had been postulated and experimentally confirmed in the field of neuroscience as a learning rule that refines the Hebbian rule. Here, we relax some of the constraints in the DyBM in a way that it becomes more suitable for computation and learning. We show that learning the DyBM can be considered as logistic regression for binary-valued time-series. We also show how the DyBM can learn real-valued data in the form of a Gaussian DyBM and discuss its relation to the vector autoregressive (VAR) model. The Gaussian DyBM extends the VAR by using additional explanatory variables, which correspond to the eligibility traces of the DyBM and capture long term dependency of the time-series. Numerical experiments show that the Gaussian DyBM significantly improves the predictive accuracy over VAR.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!