Authors: Xuebin Qin,Shida He,Camilo Perez Quintero,Abhineet Singh,Masood Dehghan,Martin Jagersand
ArXiv: 1705.00360
Document:
PDF
DOI
Artifact development version:
GitHub
Abstract URL: http://arxiv.org/abs/1705.00360v2
This paper presents a novel real-time method for tracking salient closed
boundaries from video image sequences. This method operates on a set of
straight line segments that are produced by line detection. The tracking scheme
is coherently integrated into a perceptual grouping framework in which the
visual tracking problem is tackled by identifying a subset of these line
segments and connecting them sequentially to form a closed boundary with the
largest saliency and a certain similarity to the previous one. Specifically, we
define a new tracking criterion which combines a grouping cost and an area
similarity constraint. The proposed criterion makes the resulting boundary
tracking more robust to local minima. To achieve real-time tracking
performance, we use Delaunay Triangulation to build a graph model with the
detected line segments and then reduce the tracking problem to finding the
optimal cycle in this graph. This is solved by our newly proposed closed
boundary candidates searching algorithm called "Bidirectional Shortest Path
(BDSP)". The efficiency and robustness of the proposed method are tested on
real video sequences as well as during a robot arm pouring experiment.