This portal has been archived. Explore the next generation of this technology.

Neural Shuffle-Exchange Networks - Sequence Processing in O(n log n) Time

lib:4ee418c8c811a2ff (v1.0.0)

Vote to reproduce this paper and share portable workflows   1 
Authors: Karlis Freivalds,Emīls Ozoliņš,Agris Šostaks
Where published: NeurIPS 2019 12
Document:  PDF  DOI 
Artifact development version: GitHub
Abstract URL: http://papers.nips.cc/paper/8889-neural-shuffle-exchange-networks-sequence-processing-in-on-log-n-time


A key requirement in sequence to sequence processing is the modeling of long range dependencies. To this end, a vast majority of the state-of-the-art models use attention mechanism which is of O(n^2) complexity that leads to slow execution for long sequences. We introduce a new Shuffle-Exchange neural network model for sequence to sequence tasks which have O(log n) depth and O(n log n) total complexity. We show that this model is powerful enough to infer efficient algorithms for common algorithmic benchmarks including sorting, addition and multiplication. We evaluate our architecture on the challenging LAMBADA question answering dataset and compare it with the state-of-the-art models which use attention. Our model achieves competitive accuracy and scales to sequences with more than a hundred thousand of elements. We are confident that the proposed model has the potential for building more efficient architectures for processing large interrelated data in language modeling, music generation and other application domains.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!