We are very excited to join forces with MLCommons and OctoML.ai! Contact Grigori Fursin for more details!

Design of Novel Algorithm and Architecture for Gaussian Based Color Image Enhancement System for Real Time Applications

lib:4fec9937fd96e233 (v1.0.0)

Authors: M. C. Hanumantharaju,M. Ravishankar,D. R. Rameshbabu
ArXiv: 1409.4043
Document:  PDF  DOI 
Abstract URL: http://arxiv.org/abs/1409.4043v1


This paper presents the development of a new algorithm for Gaussian based color image enhancement system. The algorithm has been designed into architecture suitable for FPGA/ASIC implementation. The color image enhancement is achieved by first convolving an original image with a Gaussian kernel since Gaussian distribution is a point spread function which smoothen the image. Further, logarithm-domain processing and gain/offset corrections are employed in order to enhance and translate pixels into the display range of 0 to 255. The proposed algorithm not only provides better dynamic range compression and color rendition effect but also achieves color constancy in an image. The design exploits high degrees of pipelining and parallel processing to achieve real time performance. The design has been realized by RTL compliant Verilog coding and fits into a single FPGA with a gate count utilization of 321,804. The proposed method is implemented using Xilinx Virtex-II Pro XC2VP40-7FF1148 FPGA device and is capable of processing high resolution color motion pictures of sizes of up to 1600x1200 pixels at the real time video rate of 116 frames per second. This shows that the proposed design would work for not only still images but also for high resolution video sequences.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!