Authors: Xiaojun Wan,Ziqiang Cao,Furu Wei,Sujian Li,Ming Zhou
ArXiv: 1507.02062
Document:
PDF
DOI
Abstract URL: http://arxiv.org/abs/1507.02062v1
Existing multi-document summarization systems usually rely on a specific
summarization model (i.e., a summarization method with a specific parameter
setting) to extract summaries for different document sets with different
topics. However, according to our quantitative analysis, none of the existing
summarization models can always produce high-quality summaries for different
document sets, and even a summarization model with good overall performance may
produce low-quality summaries for some document sets. On the contrary, a
baseline summarization model may produce high-quality summaries for some
document sets. Based on the above observations, we treat the summaries produced
by different summarization models as candidate summaries, and then explore
discriminative reranking techniques to identify high-quality summaries from the
candidates for difference document sets. We propose to extract a set of
candidate summaries for each document set based on an ILP framework, and then
leverage Ranking SVM for summary reranking. Various useful features have been
developed for the reranking process, including word-level features,
sentence-level features and summary-level features. Evaluation results on the
benchmark DUC datasets validate the efficacy and robustness of our proposed
approach.