We are very excited to join forces with MLCommons and OctoML.ai! Contact Grigori Fursin for more details!

An automatic water detection approach based on Dempster-Shafer theory for multi spectral images

lib:6924bc59d98ad462 (v1.0.0)

Authors: Na Li,Arnaud Martin,RĂ©mi Estival
ArXiv: 1708.02747
Document:  PDF  DOI 
Abstract URL: http://arxiv.org/abs/1708.02747v2


Detection of surface water in natural environment via multi-spectral imagery has been widely utilized in many fields, such land cover identification. However, due to the similarity of the spectra of water bodies, built-up areas, approaches based on high-resolution satellites sometimes confuse these features. A popular direction to detect water is spectral index, often requiring the ground truth to find appropriate thresholds manually. As for traditional machine learning methods, they identify water merely via differences of spectra of various land covers, without taking specific properties of spectral reflection into account. In this paper, we propose an automatic approach to detect water bodies based on Dempster-Shafer theory, combining supervised learning with specific property of water in spectral band in a fully unsupervised context. The benefits of our approach are twofold. On the one hand, it performs well in mapping principle water bodies, including little streams and branches. On the other hand, it labels all objects usually confused with water as `ignorance', including half-dry watery areas, built-up areas and semi-transparent clouds and shadows. `Ignorance' indicates not only limitations of the spectral properties of water and supervised learning itself but insufficiency of information from multi-spectral bands as well, providing valuable information for further land cover classification.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!