We are very excited to join forces with MLCommons and OctoML.ai! Contact Grigori Fursin for more details!

Deploy Large-Scale Deep Neural Networks in Resource Constrained IoT Devices with Local Quantization Region

lib:6eb48c5b7cd9901a (v1.0.0)

Authors: Yi Yang,Andy Chen,Xiaoming Chen,Jiang Ji,Zhenyang Chen,Yan Dai
ArXiv: 1805.09473
Document:  PDF  DOI 
Abstract URL: http://arxiv.org/abs/1805.09473v1

Implementing large-scale deep neural networks with high computational complexity on low-cost IoT devices may inevitably be constrained by limited computation resource, making the devices hard to respond in real-time. This disjunction makes the state-of-art deep learning algorithms, i.e. CNN (Convolutional Neural Networks), incompatible with IoT world. We present a low-bit (range from 8-bit to 1-bit) scheme with our local quantization region algorithm. We use models in Caffe model zoo as our example tasks to evaluate the effect of our low precision data representation scheme. With the available of local quantization region, we find implementations on top of those schemes could greatly retain the model accuracy, besides the reduction of computational complexity. For example, our 8-bit scheme has no drops on top-1 and top-5 accuracy with 2x speedup on Intel Edison IoT platform. Implementations based on our 4-bit, 2-bit or 1-bit scheme are also applicable to IoT devices with advances of low computational complexity. For example, the drop on our task is only 0.7% when using 2-bit scheme, a scheme which could largely save transistors. Making low-bit scheme usable here opens a new door for further optimization on commodity IoT controller, i.e. extra speed-up could be achieved by replacing multiply-accumulate operations with the proposed table look-up operations. The whole study offers a new approach to relief the challenge of bring advanced deep learning algorithm to resource constrained low-cost IoT device.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives


Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!