Check the preview of 2nd version of this platform being developed by the open MLCommons taskforce on automation and reproducibility as a free, open-source and technology-agnostic on-prem platform.

Low-light Image Enhancement Algorithm Based on Retinex and Generative Adversarial Network

lib:80b9d6444b8b4e96 (v1.0.0)

Authors: Yangming Shi,Xiaopo Wu,Ming Zhu
ArXiv: 1906.06027
Document:  PDF  DOI 
Abstract URL: https://arxiv.org/abs/1906.06027v1


Low-light image enhancement is generally regarded as a challenging task in image processing, especially for the complex visual tasks at night or weakly illuminated. In order to reduce the blurs or noises on the low-light images, a large number of papers have contributed to applying different technologies. Regretfully, most of them had served little purposes in coping with the extremely poor illumination parts of images or test in practice. In this work, the authors propose a novel approach for processing low-light images based on the Retinex theory and generative adversarial network (GAN), which is composed of the decomposition part for splitting the image into illumination image and reflected image, and the enhancement part for generating high-quality image. Such a discriminative network is expected to make the generated image clearer. Couples of experiments have been implemented under the circumstance of different lighting strength on the basis of Converted See-In-the-Dark (CSID) datasets, and the satisfactory results have been achieved with exceeding expectation that much encourages the authors. In a word, the proposed GAN-based network and employed Retinex theory in this work have proven to be effective in dealing with the low-light image enhancement problems, which will benefit the image processing with no doubt.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!