Authors: Jiong Zhang,Remco Duits,Gonzalo Sanguinetti,Bart M. ter Haar Romeny
ArXiv: 1403.3320
Document:
PDF
DOI
Abstract URL: http://arxiv.org/abs/1403.3320v7
Left-invariant PDE-evolutions on the roto-translation group $SE(2)$ (and
their resolvent equations) have been widely studied in the fields of cortical
modeling and image analysis. They include hypo-elliptic diffusion (for contour
enhancement) proposed by Citti & Sarti, and Petitot, and they include the
direction process (for contour completion) proposed by Mumford. This paper
presents a thorough study and comparison of the many numerical approaches,
which, remarkably, is missing in the literature. Existing numerical approaches
can be classified into 3 categories: Finite difference methods, Fourier based
methods (equivalent to $SE(2)$-Fourier methods), and stochastic methods (Monte
Carlo simulations). There are also 3 types of exact solutions to the
PDE-evolutions that were derived explicitly (in the spatial Fourier domain) in
previous works by Duits and van Almsick in 2005. Here we provide an overview of
these 3 types of exact solutions and explain how they relate to each of the 3
numerical approaches. We compute relative errors of all numerical approaches to
the exact solutions, and the Fourier based methods show us the best performance
with smallest relative errors. We also provide an improvement of Mathematica
algorithms for evaluating Mathieu-functions, crucial in implementations of the
exact solutions. Furthermore, we include an asymptotical analysis of the
singularities within the kernels and we propose a probabilistic extension of
underlying stochastic processes that overcomes the singular behavior in the
origin of time-integrated kernels. Finally, we show retinal imaging
applications of combining left-invariant PDE-evolutions with invertible
orientation scores.