Authors: Shuchi Chawla,Nikhil Devanur,Janardhan Kulkarni,Rad Niazadeh
ArXiv: 1703.00484
Document:
PDF
DOI
Abstract URL: http://arxiv.org/abs/1703.00484v1
We consider a scheduling problem where a cloud service provider has multiple
units of a resource available over time. Selfish clients submit jobs, each with
an arrival time, deadline, length, and value. The service provider's goal is to
implement a truthful online mechanism for scheduling jobs so as to maximize the
social welfare of the schedule. Recent work shows that under a stochastic
assumption on job arrivals, there is a single-parameter family of mechanisms
that achieves near-optimal social welfare. We show that given any such family
of near-optimal online mechanisms, there exists an online mechanism that in the
worst case performs nearly as well as the best of the given mechanisms. Our
mechanism is truthful whenever the mechanisms in the given family are truthful
and prompt, and achieves optimal (within constant factors) regret.
We model the problem of competing against a family of online scheduling
mechanisms as one of learning from expert advice. A primary challenge is that
any scheduling decisions we make affect not only the payoff at the current
step, but also the resource availability and payoffs in future steps.
Furthermore, switching from one algorithm (a.k.a. expert) to another in an
online fashion is challenging both because it requires synchronization with the
state of the latter algorithm as well as because it affects the incentive
structure of the algorithms. We further show how to adapt our algorithm to a
non-clairvoyant setting where job lengths are unknown until jobs are run to
completion. Once again, in this setting, we obtain truthfulness along with
asymptotically optimal regret (within poly-logarithmic factors).