Authors: Bhavan Vasu,Chengjiang Long
ArXiv: 1912.08387
Document:
PDF
DOI
Abstract URL: https://arxiv.org/abs/1912.08387v1
Deep neural networks have achieved great success in many real-world applications, yet it remains unclear and difficult to explain their decision-making process to an end-user. In this paper, we address the explainable AI problem for deep neural networks with our proposed framework, named IASSA, which generates an importance map indicating how salient each pixel is for the model's prediction with an iterative and adaptive sampling module. We employ an affinity matrix calculated on multi-level deep learning features to explore long-range pixel-to-pixel correlation, which can shift the saliency values guided by our long-range and parameter-free spatial attention. Extensive experiments on the MS-COCO dataset show that our proposed approach matches or exceeds the performance of state-of-the-art black-box explanation methods.