Evaluation of Protein-protein Interaction Predictors with Noisy Partially Labeled Data Sets

lib:9bf90264f969c02d (v1.0.0)

Authors: Haohan Wang,Madhavi K. Ganapathiraju
ArXiv: 1509.05742
Document:  PDF  DOI 
Abstract URL: http://arxiv.org/abs/1509.05742v1

Protein-protein interaction (PPI) prediction is an important problem in machine learning and computational biology. However, there is no data set for training or evaluation purposes, where all the instances are accurately labeled. Instead, what is available are instances of positive class (with possibly noisy labels) and no instances of negative class. The non-availability of negative class data is typically handled with the observation that randomly chosen protein-pairs have a nearly 100% chance of being negative class, as only 1 in 1,500 protein pairs expected is expected to be an interacting pair. In this paper, we focused on the problem that non-availability of accurately labeled testing data sets in the domain of protein-protein interaction (PPI) prediction may lead to biased evaluation results. We first showed that not acknowledging the inherent skew in the interactome (i.e. rare occurrence of positive instances) leads to an over-estimated accuracy of the predictor. Then we show that, with the belief that positive interactions are a rare category, sampling random pairs of proteins excluding known interacting proteins set as the negative testing data set could lead to an under-estimated evaluation result. We formalized those two problems to validate the above claim, and based on the formalization, we proposed a balancing method to cancel out the over-estimation with under-estimation. Finally, our experiments validated the theoretical aspects and showed that this balancing evaluation could evaluate the exact performance without availability of golden standard data sets.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives


Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!