Deep Learning for Medical Image Segmentation

lib:a1e6f62f4bb401ea (v1.0.0)

Authors: Matthew Lai
ArXiv: 1505.02000
Document:  PDF  DOI 
Abstract URL: http://arxiv.org/abs/1505.02000v1


This report provides an overview of the current state of the art deep learning architectures and optimisation techniques, and uses the ADNI hippocampus MRI dataset as an example to compare the effectiveness and efficiency of different convolutional architectures on the task of patch-based 3-dimensional hippocampal segmentation, which is important in the diagnosis of Alzheimer's Disease. We found that a slightly unconventional "stacked 2D" approach provides much better classification performance than simple 2D patches without requiring significantly more computational power. We also examined the popular "tri-planar" approach used in some recently published studies, and found that it provides much better results than the 2D approaches, but also with a moderate increase in computational power requirement. Finally, we evaluated a full 3D convolutional architecture, and found that it provides marginally better results than the tri-planar approach, but at the cost of a very significant increase in computational power requirement.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!