Check the preview of 2nd version of this platform being developed by the open MLCommons taskforce on automation and reproducibility as a free, open-source and technology-agnostic on-prem platform.

The Optimal Approximation Factor in Density Estimation

lib:a74cb4bf72ab15f8 (v1.0.0)

Authors: Olivier Bousquet,Daniel Kane,Shay Moran
ArXiv: 1902.05876
Document:  PDF  DOI 
Abstract URL: https://arxiv.org/abs/1902.05876v3


Consider the following problem: given two arbitrary densities $q_1,q_2$ and a sample-access to an unknown target density $p$, find which of the $q_i$'s is closer to $p$ in total variation. A remarkable result due to Yatracos shows that this problem is tractable in the following sense: there exists an algorithm that uses $O(\epsilon^{-2})$ samples from $p$ and outputs~$q_i$ such that with high probability, $TV(q_i,p) \leq 3\cdot\mathsf{opt} + \epsilon$, where $\mathsf{opt}= \min\{TV(q_1,p),TV(q_2,p)\}$. Moreover, this result extends to any finite class of densities $\mathcal{Q}$: there exists an algorithm that outputs the best density in $\mathcal{Q}$ up to a multiplicative approximation factor of 3. We complement and extend this result by showing that: (i) the factor 3 can not be improved if one restricts the algorithm to output a density from $\mathcal{Q}$, and (ii) if one allows the algorithm to output arbitrary densities (e.g.\ a mixture of densities from $\mathcal{Q}$), then the approximation factor can be reduced to 2, which is optimal. In particular this demonstrates an advantage of improper learning over proper in this setup. We develop two approaches to achieve the optimal approximation factor of 2: an adaptive one and a static one. Both approaches are based on a geometric point of view of the problem and rely on estimating surrogate metrics to the total variation. Our sample complexity bounds exploit techniques from {\it Adaptive Data Analysis}.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!