We are very excited to join forces with MLCommons and OctoML.ai! Contact Grigori Fursin for more details!

Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation

lib:a8dd654567bab361 (v1.0.0)

Authors: Siyuan Huang,Siyuan Qi,Yinxue Xiao,Yixin Zhu,Ying Nian Wu,Song-Chun Zhu
Where published: NeurIPS 2018 12
ArXiv: 1810.13049
Document:  PDF  DOI 
Abstract URL: http://arxiv.org/abs/1810.13049v2

Holistic 3D indoor scene understanding refers to jointly recovering the i) object bounding boxes, ii) room layout, and iii) camera pose, all in 3D. The existing methods either are ineffective or only tackle the problem partially. In this paper, we propose an end-to-end model that simultaneously solves all three tasks in real-time given only a single RGB image. The essence of the proposed method is to improve the prediction by i) parametrizing the targets (e.g., 3D boxes) instead of directly estimating the targets, and ii) cooperative training across different modules in contrast to training these modules individually. Specifically, we parametrize the 3D object bounding boxes by the predictions from several modules, i.e., 3D camera pose and object attributes. The proposed method provides two major advantages: i) The parametrization helps maintain the consistency between the 2D image and the 3D world, thus largely reducing the prediction variances in 3D coordinates. ii) Constraints can be imposed on the parametrization to train different modules simultaneously. We call these constraints "cooperative losses" as they enable the joint training and inference. We employ three cooperative losses for 3D bounding boxes, 2D projections, and physical constraints to estimate a geometrically consistent and physically plausible 3D scene. Experiments on the SUN RGB-D dataset shows that the proposed method significantly outperforms prior approaches on 3D object detection, 3D layout estimation, 3D camera pose estimation, and holistic scene understanding.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives


Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!