We are very excited to join forces with MLCommons and OctoML.ai! Contact Grigori Fursin for more details!

Harvesting Multiple Views for Marker-less 3D Human Pose Annotations

lib:b277324e0ff4bd4a (v1.0.0)

Authors: Georgios Pavlakos,Xiaowei Zhou,Konstantinos G. Derpanis,Kostas Daniilidis
Where published: CVPR 2017 7
ArXiv: 1704.04793
Document:  PDF  DOI 
Abstract URL: http://arxiv.org/abs/1704.04793v1


Recent advances with Convolutional Networks (ConvNets) have shifted the bottleneck for many computer vision tasks to annotated data collection. In this paper, we present a geometry-driven approach to automatically collect annotations for human pose prediction tasks. Starting from a generic ConvNet for 2D human pose, and assuming a multi-view setup, we describe an automatic way to collect accurate 3D human pose annotations. We capitalize on constraints offered by the 3D geometry of the camera setup and the 3D structure of the human body to probabilistically combine per view 2D ConvNet predictions into a globally optimal 3D pose. This 3D pose is used as the basis for harvesting annotations. The benefit of the annotations produced automatically with our approach is demonstrated in two challenging settings: (i) fine-tuning a generic ConvNet-based 2D pose predictor to capture the discriminative aspects of a subject's appearance (i.e.,"personalization"), and (ii) training a ConvNet from scratch for single view 3D human pose prediction without leveraging 3D pose groundtruth. The proposed multi-view pose estimator achieves state-of-the-art results on standard benchmarks, demonstrating the effectiveness of our method in exploiting the available multi-view information.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!