Authors: Patrick Forré,Joris M. Mooij
ArXiv: 1710.08775
Document:
PDF
DOI
Abstract URL: http://arxiv.org/abs/1710.08775v1
We investigate probabilistic graphical models that allow for both cycles and
latent variables. For this we introduce directed graphs with hyperedges
(HEDGes), generalizing and combining both marginalized directed acyclic graphs
(mDAGs) that can model latent (dependent) variables, and directed mixed graphs
(DMGs) that can model cycles. We define and analyse several different Markov
properties that relate the graphical structure of a HEDG with a probability
distribution on a corresponding product space over the set of nodes, for
example factorization properties, structural equations properties,
ordered/local/global Markov properties, and marginal versions of these. The
various Markov properties for HEDGes are in general not equivalent to each
other when cycles or hyperedges are present, in contrast with the simpler case
of directed acyclic graphical (DAG) models (also known as Bayesian networks).
We show how the Markov properties for HEDGes - and thus the corresponding
graphical Markov models - are logically related to each other.