We consider in this paper the problem of noisy 1-bit matrix completion under
a general non-uniform sampling distribution using the max-norm as a convex
relaxation for the rank. A max-norm constrained maximum likelihood estimate is
introduced and studied. The rate of convergence for the estimate is obtained.
Information-theoretical methods are used to establish a minimax lower bound
under the general sampling model. The minimax upper and lower bounds together
yield the optimal rate of convergence for the Frobenius norm loss.
Computational algorithms and numerical performance are also discussed.