Check the preview of 2nd version of this platform being developed by the open MLCommons taskforce on automation and reproducibility as a free, open-source and technology-agnostic on-prem platform.

A Framework for End-to-End Learning on Semantic Tree-Structured Data

lib:cf9c4dc74c39b59a (v1.0.0)

Authors: William Woof,Ke Chen
ArXiv: 2002.05707
Document:  PDF  DOI 
Abstract URL: https://arxiv.org/abs/2002.05707v1


While learning models are typically studied for inputs in the form of a fixed dimensional feature vector, real world data is rarely found in this form. In order to meet the basic requirement of traditional learning models, structural data generally have to be converted into fix-length vectors in a handcrafted manner, which is tedious and may even incur information loss. A common form of structured data is what we term "semantic tree-structures", corresponding to data where rich semantic information is encoded in a compositional manner, such as those expressed in JavaScript Object Notation (JSON) and eXtensible Markup Language (XML). For tree-structured data, several learning models have been studied to allow for working directly on raw tree-structure data, However such learning models are limited to either a specific tree-topology or a specific tree-structured data format, e.g., synthetic parse trees. In this paper, we propose a novel framework for end-to-end learning on generic semantic tree-structured data of arbitrary topology and heterogeneous data types, such as data expressed in JSON, XML and so on. Motivated by the works in recursive and recurrent neural networks, we develop exemplar neural implementations of our framework for the JSON format. We evaluate our approach on several UCI benchmark datasets, including ablation and data-efficiency studies, and on a toy reinforcement learning task. Experimental results suggest that our framework yields comparable performance to use of standard models with dedicated feature-vectors in general, and even exceeds baseline performance in cases where compositional nature of the data is particularly important. The source code for a JSON-based implementation of our framework along with experiments can be downloaded at https://github.com/EndingCredits/json2vec.

Relevant initiatives  

Related knowledge about this paper Reproduced results (crowd-benchmarking and competitions) Artifact and reproducibility checklists Common formats for research projects and shared artifacts Reproducibility initiatives

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!