Authors: Xiao Xiang Zhu,Devis Tuia,Lichao Mou,Gui-Song Xia,Liangpei Zhang,Feng Xu,Friedrich Fraundorfer
ArXiv: 1710.03959
Document:
PDF
DOI
Artifact development version:
GitHub
Abstract URL: http://arxiv.org/abs/1710.03959v1
Standing at the paradigm shift towards data-intensive science, machine
learning techniques are becoming increasingly important. In particular, as a
major breakthrough in the field, deep learning has proven as an extremely
powerful tool in many fields. Shall we embrace deep learning as the key to all?
Or, should we resist a 'black-box' solution? There are controversial opinions
in the remote sensing community. In this article, we analyze the challenges of
using deep learning for remote sensing data analysis, review the recent
advances, and provide resources to make deep learning in remote sensing
ridiculously simple to start with. More importantly, we advocate remote sensing
scientists to bring their expertise into deep learning, and use it as an
implicit general model to tackle unprecedented large-scale influential
challenges, such as climate change and urbanization.