Authors: Fayao Liu,Guosheng Lin,Ruizhi Qiao,Chunhua Shen
ArXiv: 1703.08764
Document:
PDF
DOI
Abstract URL: http://arxiv.org/abs/1703.08764v1
We propose a new approach to image segmentation, which exploits the
advantages of both conditional random fields (CRFs) and decision trees. In the
literature, the potential functions of CRFs are mostly defined as a linear
combination of some pre-defined parametric models, and then methods like
structured support vector machines (SSVMs) are applied to learn those linear
coefficients. We instead formulate the unary and pairwise potentials as
nonparametric forests---ensembles of decision trees, and learn the ensemble
parameters and the trees in a unified optimization problem within the
large-margin framework. In this fashion, we easily achieve nonlinear learning
of potential functions on both unary and pairwise terms in CRFs. Moreover, we
learn class-wise decision trees for each object that appears in the image. Due
to the rich structure and flexibility of decision trees, our approach is
powerful in modelling complex data likelihoods and label relationships. The
resulting optimization problem is very challenging because it can have
exponentially many variables and constraints. We show that this challenging
optimization can be efficiently solved by combining a modified column
generation and cutting-planes techniques. Experimental results on both binary
(Graz-02, Weizmann horse, Oxford flower) and multi-class (MSRC-21, PASCAL VOC
2012) segmentation datasets demonstrate the power of the learned nonlinear
nonparametric potentials.