Some tests on full 50000 ImageNet validation set using MobileNet model and ONNX runtime, in different pre-processing modes: ----------------------------------------------------------------------------- bilinear interpolation on resize,crop.875,model=mobilenet: Accuracy top 1: 0.71226 (35613 of 50000) Accuracy top 5: 0.89834 (44917 of 50000) ----------------------------------------------------------------------------- bilinear interpolation on resize,crop.875,model=resnet: Accuracy top 1: 0.7617 (38085 of 50000) Accuracy top 5: 0.92866 (46433 of 50000) ----------------------------------------------------------------------------- Creating single-image datasets (need disambiguation in filename, extra tags and extra path) : ck install package --tags=dataset,preprocessed,external_file --env.CK_IMAGE_FILE=~/Desktop/lenny_kite.JPG --extra_tags=lenny_kite --extra_path=_lenny_kite ck install package --tags=dataset,preprocessed,external_file --env.CK_IMAGE_FILE=~/Desktop/lenny_canopy.JPG --extra_tags=lenny_canopy --extra_path=_lenny_canopy ``` $ ck virtual env --tags=dataset,imagenet,raw $ ck install package --tags=dataset,imagenet,preprocessed \ --env.CK_IMAGE_FILE=${CK_ENV_DATASET_IMAGENET_VAL}/ILSVRC2012_val_00002916.JPEG \ --extra_tags=toilet-paper --extra_path=_ILSVRC2012_val_00002916 $ ck run program:image-classification-onnx-py --cmd_key=preprocessed --dep_add_tags.images=toilet-paper ```