This portal has been archived. Explore the next generation of this technology.
package:model-tflite-mlperf-ssd-mobilenet (v3.0.0)
Copyright: See copyright in the source repository
License: See license in the source repository
Creation date: 2019-03-27
Source: GitHub
cID: 1dc07ee0f4742028:ad9565c4d07b3d1d

Don't hesitate to get in touch if you encounter any issues or would like to discuss this community project!
Please report if this CK component works: 1  or fails: 0 
Sign up to be notified when artifacts are shared or updated!

Description  

This meta package is our attempt to provide a unified Python API, CLI and JSON meta description for different package managers and building tools to automatically download and install different components (models, data sets, libraries, frameworks, tools) necessary to run portable program pipelines across evolving platforms. Our on-going project is to make the onboarding process as simple as possible via this platform. Please check this CK white paper and don't hesitate to contact us if you have suggestions or feedback!

Dependencies    

ReadMe  

MLPerf Inference - Object Detection - SSD-MobileNet (TFLite)

This model was converted to TFLite from the original TF model in two steps, by adapting instructions from Google's blog.

  1. Creating TFLite graph from TF checkpoint
  2. Creating TFLite model from TFLite graph
    1. with the postprocessing layer
    2. without the postprocessing layer
  3. Reference accuracy

Step 1: model.ckpt.* to tflite_graph.pb

We tested this step with TensorFlow v1.11-v1.13, either prebuilt or built from source.

NB: On 25/Apr/2019 we informed Google of a bug in their converter, which can be fixed e.g. as follows:

anton@diviniti:~/CK_TOOLS/tensorflowmodel-api-master/models/research$ git diff
diff --git a/research/object_detection/export_tflite_ssd_graph.py b/research/object_detection/export_tflite_ssd_graph.py
index b7ed428..1b52335 100644
--- a/research/object_detection/export_tflite_ssd_graph.py
+++ b/research/object_detection/export_tflite_ssd_graph.py
@@ -136,7 +136,7 @@ def main(argv):
   export_tflite_ssd_graph_lib.export_tflite_graph(
       pipeline_config, FLAGS.trained_checkpoint_prefix, FLAGS.output_directory,
       FLAGS.add_postprocessing_op, FLAGS.max_detections,
-      FLAGS.max_classes_per_detection, FLAGS.use_regular_nms)
+      FLAGS.max_classes_per_detection, FLAGS.detections_per_class, FLAGS.use_regular_nms)


 if __name__ == '__main__':

This was fixed upstream on 31/May/2019 (albeit in a somewhat less elegant way).

Manual instructions

Install TensorFlow

$ python -m pip install tensorflow --user
$ python -c "import tensorflow as tf; print(tf.__version__)"
1.13.1

Install TensorFlow Object Detection API

$ export TF_MODEL_API=...

Install TensorFlow SSD-MobileNet model

$ export $TMP_DIR=/tmp && cd ${TMD_DIR}
$ wget http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz
$ tar xvzf ssd_mobilenet_v1_coco_2018_01_28.tar.gz
$ export TF_MODEL_DIR=${PWD}/ssd_mobilenet_v1_coco_2018_01_28
$ ls -la ${TF_MODEL_DIR}
total 58176
drwxr-xr-x  3 anton anton     4096 Feb  1  2018 .
drwxrwxrwt 18 root  root     36864 Apr 26 11:42 ..
-rw-r--r--  1 anton anton       77 Feb  1  2018 checkpoint
-rw-r--r--  1 anton anton 29103956 Feb  1  2018 frozen_inference_graph.pb
-rw-r--r--  1 anton anton 27380740 Feb  1  2018 model.ckpt.data-00000-of-00001
-rw-r--r--  1 anton anton     8937 Feb  1  2018 model.ckpt.index
-rw-r--r--  1 anton anton  3006546 Feb  1  2018 model.ckpt.meta
-rw-r--r--  1 anton anton     4138 Feb  1  2018 pipeline.config
drwxr-xr-x  3 anton anton     4096 Feb  1  2018 saved_model

Convert

$ cd ${TF_MODEL_API}/research
$ export PYTHONPATH=.:./slim:$PYTHONPATH
$ export TFLITE_MODEL_DIR=${TF_MODEL_DIR}
$ python object_detection/export_tflite_ssd_graph.py \
--input_type image_tensor \
--pipeline_config_path ${TF_MODEL_DIR}/pipeline.config \
--trained_checkpoint_prefix ${TF_MODEL_DIR}/model.ckpt \
--output_directory ${TFLITE_MODEL_DIR} \
--add_postprocessing_op=true \
--use_regular_nms=true \
--config_override " \
  model { \
    ssd { \
      post_processing { \
        batch_non_max_suppression { \
          score_threshold: 0.3 \
          iou_threshold: 0.6 \
          max_detections_per_class: 100 \
          max_total_detections: 100 \
        } \
      } \
    } \
  } \
"

Semi-automated instructions

Install TensorFlow

$ ck install package --tags=lib,tensorflow,v1.13,vcpu

More than one package or version found:

 0) lib-tensorflow-1.13.1-src-cpu  Version 1.13.1  (333b554fb5b0e443)
 1) lib-tensorflow-1.13.1-cpu  Version 1.13.1  (88ad16f0bcfb4ae2)

Please select the package to install [ hit return for "0" ]:

Option 1 is faster, but option 0 can be used for Step 2 (where source code is needed).

Install TensorFlow Object Detection API

$ ck install package --tags=model,tensorflow,api

Install TensorFlow SSD-MobileNet model

$ ck install package --tags=model,tensorflow,mlperf,ssd-mobilenet,non-quantized

Descend into virtual environments one by one

TensorFlow
$ ck virtual env --tags=lib,tensorflow,v1.13,vcpu
$ ${CK_ENV_COMPILER_PYTHON_FILE} -c "import tensorflow as tf; print(tf.__version__)"

NB: Using ${CK_ENV_COMPILER_PYTHON_FILE} should ensure that the same version of Python that was used to install TensorFlow and its dependencies (e.g. /usr/bin/python3.6) will be used to run the conversion script.

TensorFlow Object Detection API
$ ck virtual env --tags=model,tensorflow,api
$ echo ${CK_ENV_TENSORFLOW_MODELS_OBJ_DET_DIR}
/home/anton/CK_TOOLS/tensorflowmodel-api-master/models/research/object_detection
TensorFlow SSD-MobileNet model
$ ck virtual env --tags=model,tensorflow,mlperf,ssd-mobilenet,non-quantized
$ echo ${CK_ENV_TENSORFLOW_MODEL_WEIGHTS_FILE}
/home/anton/CK_TOOLS/model-tf-mlperf-ssd-mobilenet/model.ckpt
$ echo "$(dirname ${CK_ENV_TENSORFLOW_MODEL_WEIGHTS_FILE})"
/home/anton/CK_TOOLS/model-tf-mlperf-ssd-mobilenet

TODO: Need to introduce an environment variable for the model directory, so not having to use the $(dirname ...) idiom all the time.

Convert

$ ${CK_ENV_COMPILER_PYTHON_FILE} \
${CK_ENV_TENSORFLOW_MODELS_OBJ_DET_DIR}/export_tflite_ssd_graph.py \
--input_type image_tensor \
--pipeline_config_path "$(dirname ${CK_ENV_TENSORFLOW_MODEL_WEIGHTS_FILE})"/pipeline.config \
--trained_checkpoint_prefix "$(dirname ${CK_ENV_TENSORFLOW_MODEL_WEIGHTS_FILE})"/model.ckpt \
--output_directory "$(dirname ${CK_ENV_TENSORFLOW_MODEL_WEIGHTS_FILE})" \
--add_postprocessing_op=true \
--use_regular_nms=true \
--config_override " \
  model { \
    ssd { \
      post_processing { \
        batch_non_max_suppression { \
          score_threshold: 0.3 \
          iou_threshold: 0.6 \
          max_detections_per_class: 100 \
          max_total_detections: 100 \
        } \
      } \
    } \
  } \
"
$ grep -A 3 use_regular_nms "$(dirname ${CK_ENV_TENSORFLOW_MODEL_WEIGHTS_FILE})"/tflite_graph.pbtxt
    key: "use_regular_nms"
    value {
      b: true
    }

Step 2: from tflite_graph.pb to detect*.tflite

TODO: Update with manual and semi-automatic instructions.

We tested this step with (the source of) TensorFlow v1.11-v1.13 and Bazel v0.20.0.

Option 1: from tflite_graph.pb to detect.tflite

$ bazel run -c opt tensorflow/contrib/lite/toco:toco -- \
    --input_file=${TFLITE_MODEL_DIR}/tflite_graph.pb \
    --output_file=${TFLITE_MODEL_DIR}/detect.tflite \
    --input_shapes=1,300,300,3 \
    --input_arrays=normalized_input_image_tensor \
    --output_arrays='TFLite_Detection_PostProcess','TFLite_Detection_PostProcess:1','TFLite_Detection_PostProcess:2','TFLite_Detection_PostProcess:3'  \
    --inference_type=FLOAT \
    --allow_custom_ops
...
INFO: Invocation ID: b49af84b-4ef0-44c9-adf0-236700f8cd86
INFO: Analysed target //tensorflow/lite/toco:toco (0 packages loaded, 0 targets configured).
INFO: Found 1 target...
Target //tensorflow/lite/toco:toco up-to-date:
  bazel-bin/tensorflow/lite/toco/toco
INFO: Elapsed time: 0.247s, Critical Path: 0.00s
INFO: 0 processes.
INFO: Build completed successfully, 1 total action
INFO: Running command line: bazel-bin/tensorflow/lite/toco/toco '--input_file=/home/ivan/Downloads/tflite_ssd_mobilenet_v1_coco_2018_01_28/tflite_graph.pb' '--output_file=/home/ivan/Downloads/tflite_ssd_mobilenet_v1_coco_2018_01_28/_n2_detect.tflite' '--input_shapes=1,300,300,3' '--input_arrays=normalized_input_image_tensor' '--output_arrays=TFLite_Detection_PostProcess,TFLite_Detection_PostProcess:1,TFLite_Detection_PostProcess:2,TFLite_Detection_PostProcess:3' '--infeINFO: Build completed successfully, 1 total action
2019-04-22 09:11:44.344086: I tensorflow/lite/toco/import_tensorflow.cc:1324] Converting unsupported operation: TFLite_Detection_PostProcess
2019-04-22 09:11:44.354655: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before Removing unused ops: 500 operators, 754 arrays (0 quantized)
2019-04-22 09:11:44.366436: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before general graph transformations: 500 operators, 754 arrays (0 quantized)
2019-04-22 09:11:44.401719: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] After general graph transformations pass 1: 64 operators, 176 arrays (0 quantized)
2019-04-22 09:11:44.402990: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before dequantization graph transformations: 64 operators, 176 arrays (0 quantized)
2019-04-22 09:11:44.405046: I tensorflow/lite/toco/allocate_transient_arrays.cc:345] Total transient array allocated size: 11520000 bytes, theoretical optimal value: 8640000 bytes.
2019-04-22 09:11:44.405323: I tensorflow/lite/toco/toco_tooling.cc:399] Estimated count of arithmetic ops: 2.49483 billion (note that a multiply-add is counted as 2 ops).
2019-04-22 09:11:44.405706: W tensorflow/lite/toco/tflite/operator.cc:1407] Ignoring unsupported type in list attribute with key '_output_types'

Option 2: from tflite_graph.pb to detect_cut.tflite

$ bazel run -c opt tensorflow/contrib/lite/toco:toco -- \
    --input_file=${TFLITE_MODEL_DIR}/tflite_graph.pb \
    --output_file=${TFLITE_MODEL_DIR}/detect_cut.tflite \
    --input_shapes=1,300,300,3 \
    --input_arrays=normalized_input_image_tensor \
    --output_arrays='raw_outputs/box_encodings','raw_outputs/class_predictions' \
    --inference_type=FLOAT \
    --allow_custom_ops

Reference accuracy

Regular NMS

$ ck benchmark program:object-detection-tflite --env.USE_NMS=regular \
--repetitions=1 --env.CK_BATCH_SIZE=1 --env.CK_BATCH_COUNT=5000 --env.CK_METRIC_TYPE=COCO \
--record --record_repo=local --record_uoa=mlperf-object-detection-ssd-mobilenet-tflite-accuracy \
--tags=mlperf,object-detection,ssd-mobilenet,tflite,accuracy \
--skip_print_timers --skip_stat_analysis --process_multi_keys
...
Summary:
-------------------------------
Graph loaded in 0.000000s
All images loaded in 0.000000s
All images detected in 0.000000s
Average detection time: 0.000000s
mAP: 0.22349680978666922
Recall: 0.2550505369422975
--------------------------------

Fast NMS

$ ck benchmark program:object-detection-tflite --env.USE_NMS=fast \
--repetitions=1 --env.CK_BATCH_SIZE=1 --env.CK_BATCH_COUNT=5000 --env.CK_METRIC_TYPE=COCO \
--record --record_repo=local --record_uoa=mlperf-object-detection-ssd-mobilenet-tflite-accuracy \
--tags=mlperf,object-detection,ssd-mobilenet,tflite,accuracy \
--skip_print_timers --skip_stat_analysis --process_multi_keys
...
Summary:
-------------------------------
Graph loaded in 0.000000s
All images loaded in 0.000000s
All images detected in 0.000000s
Average detection time: 0.000000s
mAP: 0.21859688835124763
Recall: 0.24801510024502602
--------------------------------

Fast NMS graph with custom model settings

You can reproduce the regular NMS behaviour even with the fast NMS graph by requesting to use custom model settings:

$ ck benchmark program:object-detection-tflite --env.USE_NMS=fast --env.CUSTOM_MODEL_SETTINGS=yes \
--repetitions=1 --env.CK_BATCH_SIZE=1 --env.CK_BATCH_COUNT=5000 --env.CK_METRIC_TYPE=COCO \
--record --record_repo=local --record_uoa=mlperf-object-detection-ssd-mobilenet-tflite-accuracy \
--tags=mlperf,object-detection,ssd-mobilenet,tflite,accuracy \
--skip_print_timers --skip_stat_analysis --process_multi_keys
...
Summary:
-------------------------------
Graph loaded in 0.000000s
All images loaded in 0.000000s
All images detected in 0.000000s
Average detection time: 0.000000s
mAP: 0.22349680978666922
Recall: 0.2550505369422975
--------------------------------

For example, you can lower the NMS score threshold for more accurate albeit slower detection:

$ ck benchmark program:object-detection-tflite --env.USE_NMS=fast \
--env.CUSTOM_MODEL_SETTINGS=yes --env.NMS_SCORE_THRESHOLD=0.00001 \
--repetitions=1 --env.CK_BATCH_SIZE=1 --env.CK_BATCH_COUNT=5000 --env.CK_METRIC_TYPE=COCO \
--record --record_repo=local --record_uoa=mlperf-object-detection-ssd-mobilenet-tflite-accuracy \
--tags=mlperf,object-detection,ssd-mobilenet,tflite,accuracy \
--skip_print_timers --skip_stat_analysis --process_multi_keys

See here for more details on custom model settings.

Versions  

Files  

Comments  

Please log in to add your comments!
If you notice any inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!