""" This module defines different blocks in the VGG16 neural network. """ from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense from keras.models import Model, Input def block1(): """ First Conv layer. """ image = Input(shape=(224, 224, 3)) layer = Conv2D(64, (3, 3), activation='relu', padding='same')(image) layer = Conv2D(64, (3, 3), activation='relu', padding='same')(layer) layer = MaxPooling2D((2, 2), strides=(2, 2))(layer) model = Model(image, layer) return model def block234(): """ Middle Conv layer. """ image = Input(shape=(112, 112, 64)) # block 2 layer = Conv2D(128, (3, 3), activation='relu', padding='same')(image) layer = Conv2D(128, (3, 3), activation='relu', padding='same')(layer) layer = MaxPooling2D((2, 2), strides=(2, 2))(layer) # block 3 layer = Conv2D(256, (3, 3), activation='relu', padding='same')(layer) layer = Conv2D(256, (3, 3), activation='relu', padding='same')(layer) layer = Conv2D(256, (3, 3), activation='relu', padding='same')(layer) layer = MaxPooling2D((2, 2), strides=(2, 2))(layer) # block 4 layer = Conv2D(512, (3, 3), activation='relu', padding='same')(layer) layer = Conv2D(512, (3, 3), activation='relu', padding='same')(layer) layer = Conv2D(512, (3, 3), activation='relu', padding='same')(layer) layer = MaxPooling2D((2, 2), strides=(2, 2))(layer) model = Model(image, layer) return model def block5(): """ Last Conv layer with flatten layer. """ image = Input(shape=(14, 14, 512)) layer = Conv2D(512, (3, 3), activation='relu', padding='same')(image) layer = Conv2D(512, (3, 3), activation='relu', padding='same')(layer) layer = Conv2D(512, (3, 3), activation='relu', padding='same')(layer) layer = MaxPooling2D((2, 2), strides=(2, 2))(layer) layer = Flatten()(layer) model = Model(image, layer) return model def fc1(): """ First fully connected layer in VGG16. """ image = Input(shape=(25088,)) layer = Dense(2048, activation='relu')(image) model = Model(image, layer) return model def fc2(): """ Last two fully connected layer. """ image = Input(shape=(4096,)) layer = Dense(4096, activation='relu')(image) layer = Dense(1000, activation='softmax')(layer) model = Model(image, layer) return model