""" Run model prediction. """ from model import alexnet import numpy as np import tensorflow as tf import keras def main(): import json import os import time timers={} STAT_REPEAT=os.environ.get('STAT_REPEAT','') if STAT_REPEAT=='' or STAT_REPEAT==None: STAT_REPEAT=50 STAT_REPEAT=int(STAT_REPEAT) config = tf.ConfigProto() # config.gpu_options.allow_growth = True # config.gpu_options.allocator_type = 'BFC' config.gpu_options.per_process_gpu_memory_fraction = float(os.getenv('CK_TF_GPU_MEMORY_PERCENT', 33)) / 100.0 sess = tf.Session(config=config) keras.backend.set_session(sess) """ Call model construction function and run model multiple times. """ model = alexnet() test_x = np.random.rand(224, 224, 3) x=model.predict(np.array([test_x])) dt=time.time() for _ in range(STAT_REPEAT): x=model.predict(np.array([test_x])) print (x) t=(time.time()-dt)/STAT_REPEAT timers['execution_time_classify']=t timers['execution_time']=t with open ('tmp-ck-timer.json', 'w') as ftimers: json.dump(timers, ftimers, indent=2) if __name__ == '__main__': main()