""" Benchmark inference speed on ImageNet Updated by Grigori Fursin to support real image classification """ import time import os import argparse import numpy as np import tvm import nnvm.compiler import nnvm.testing from tvm.contrib import util, rpc from tvm.contrib import graph_runtime as runtime from PIL import Image def transform_image(image): image = np.array(image) - np.array([123., 117., 104.]) image /= np.array([58.395, 57.12, 57.375]) image = image.transpose((2, 0, 1)) image = image[np.newaxis, :] return image # returns list of pairs (prob, class_index) def get_top5(all_probs): probs_with_classes = [] for class_index in range(len(all_probs)): prob = all_probs[class_index] probs_with_classes.append((prob, class_index)) sorted_probs = sorted(probs_with_classes, key = lambda pair: pair[0], reverse=True) return sorted_probs[0:5] def run_case(dtype, image): # Check image import os import json import sys STAT_REPEAT=os.environ.get('STAT_REPEAT','') if STAT_REPEAT=='' or STAT_REPEAT==None: STAT_REPEAT=10 STAT_REPEAT=int(STAT_REPEAT) # FGG: set model files via CK env CATEG_FILE = '../synset.txt' synset = eval(open(os.path.join(CATEG_FILE)).read()) files=[] val={} if image!=None and image!='': files=[image] else: ipath=os.environ.get('CK_ENV_DATASET_IMAGENET_VAL','') if ipath=='': print ('Error: path to ImageNet dataset is not set!') exit(1) if not os.path.isdir(ipath): print ('Error: path to ImageNet dataset was not found!') exit(1) # get all files d=os.listdir(ipath) for x in d: x1=x.lower() if x1.startswith('ilsvrc2012_val_'): files.append(os.path.join(ipath,x)) files=sorted(files) STAT_REPEAT=1 # Get correct labels ival=os.environ.get('CK_CAFFE_IMAGENET_VAL_TXT','') fval=open(ival).read().split('\n') val={} for x in fval: x=x.strip() if x!='': y=x.split(' ') val[y[0]]=int(y[1]) # FGG: set timers import time timers={} # Get first shape (expect that will be the same for all) dt=time.time() image = Image.open(os.path.join(files[0])).resize((224, 224)) if image.mode!='RGB': image=image.convert('RGB') timers['execution_time_load_image']=time.time()-dt dt=time.time() img = transform_image(image) timers['execution_time_transform_image']=time.time()-dt # load model from mxnet.gluon.model_zoo.vision import get_model from mxnet.gluon.utils import download model_path=os.environ['CK_ENV_MODEL_MXNET'] model_id=os.environ['MXNET_MODEL_ID'] block = get_model(model_id, pretrained=True, root=model_path) # We support MXNet static graph(symbol) and HybridBlock in mxnet.gluon net, params = nnvm.frontend.from_mxnet(block) # we want a probability so add a softmax operator net = nnvm.sym.softmax(net) # convert to wanted dtype (https://github.com/merrymercy/tvm-mali/issues/3) if dtype!='float32': params = {k: tvm.nd.array(v.asnumpy().astype(dtype)) for k, v in params.items()} # compile opt_level = 2 if dtype == 'float32' else 1 with nnvm.compiler.build_config(opt_level=opt_level): graph, lib, params = nnvm.compiler.build( net, tvm.target.mali(), shape={"data": data_shape}, params=params, dtype=dtype, target_host=None) # upload model to remote device tmp = util.tempdir() lib_fname = tmp.relpath('net.tar') lib.export_library(lib_fname) ctx = tvm.cl(0) rlib = lib rparams = params # create graph runtime dt=time.time() module = runtime.create(graph, rlib, ctx) module.set_input('data', tvm.nd.array(np.random.uniform(size=(data_shape)).astype(dtype))) module.set_input(**rparams) timers['execution_time_create_run_time_graph']=(time.time()-dt) total_images=0 correct_images_top1=0 correct_images_top5=0 # Shuffle files and pre-read JSON with accuracy to continue aggregating it # otherwise if FPGA board hangs, we can continue checking random images ... import random random.shuffle(files) if len(files)>1 and os.path.isfile('aggregate-ck-timer.json'): x=json.load(open('aggregate-ck-timer.json')) if 'total_images' in x: total_images=x['total_images'] if 'correct_images_top1' in x: correct_images_top1=x['correct_images_top1'] if 'correct_images_top5' in x: correct_images_top5=x['correct_images_top5'] dt1=time.time() for f in files: total_images+=1 print ('===============================================================================') print ('Image '+str(total_images)+' of '+str(len(files))+' : '+f) image = Image.open(os.path.join(f)).resize((224, 224)) if image.mode!='RGB': image=image.convert('RGB') img = transform_image(image) # set inputs module.set_input('data', tvm.nd.array(img.astype(dtype))) module.set_input(**rparams) # perform some warm up runs # print("warm up..") warm_up_timer = module.module.time_evaluator("run", ctx, 1) warm_up_timer() # execute print ('') print ("run ("+str(STAT_REPEAT)+" statistical repetitions)") dt=time.time() timer = module.module.time_evaluator("run", ctx, number=STAT_REPEAT) tcost = timer() timers['execution_time_classify']=(time.time()-dt)/STAT_REPEAT # get outputs tvm_output = module.get_output( 0, tvm.nd.empty((1000,), dtype, ctx)) top1 = np.argmax(tvm_output.asnumpy()) top5=[] atop5 = get_top5(tvm_output.asnumpy()) print ('') print('TVM prediction Top1:', top1, synset[top1]) print ('') print('TVM prediction Top5:') for q in atop5: x=q[1] y=synset[x] top5.append(x) print (x,y) print ('') print("Internal T-cost: %g" % tcost.mean) # Check correctness if available if len(val)>0: top=val[os.path.basename(f)] correct_top1=False if top==top1: correct_top1=True correct_images_top1+=1 print ('') if correct_top1: print ('Current prediction Top1: CORRECT') else: print ('Current prediction Top1: INCORRECT +('+str(top)+')') accuracy_top1=float(correct_images_top1)/float(total_images) print ('Current accuracy Top1: '+('%.5f'%accuracy_top1)) correct_top5=False if top in top5: correct_top5=True correct_images_top5+=1 print ('') if correct_top5: print ('Current prediction Top5: CORRECT') else: print ('Current prediction Top5: INCORRECT +('+str(top)+')') accuracy_top5=float(correct_images_top5)/float(total_images) print ('Current accuracy Top5: '+('%.5f'%accuracy_top5)) print ('') print ('Total elapsed time: '+('%.1f'%(time.time()-dt1))+' sec.') timers['total_images']=total_images timers['correct_images_top1']=correct_images_top1 timers['accuracy_top1']=accuracy_top1 timers['correct_images_top5']=correct_images_top5 timers['accuracy_top5']=accuracy_top5 timers['execution_time_classify_internal']=tcost.mean timers['execution_time']=tcost.mean with open ('tmp-ck-timer.json', 'w') as ftimers: json.dump(timers, ftimers, indent=2) with open ('aggregate-ck-timer.json', 'w') as ftimers: json.dump(timers, ftimers, indent=2) sys.stdout.flush() return if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--image', type=str, help="Path to JPEG image.", default=None) args = parser.parse_args() # set parameter batch_size = 1 num_classes = 1000 image_shape = (3, 224, 224) # load model data_shape = (batch_size,) + image_shape out_shape = (batch_size, num_classes) dtype='float32' if os.environ.get('CK_TVM_DTYPE','')!='': dtype=os.environ['CK_TVM_DTYPE'] run_case(dtype, args.image)