[ { "Validation mIoU": 46.27, "code_links": [ { "title": "ycszen/ContextPrior", "url": "https://github.com/ycszen/ContextPrior" } ], "date": "2020-04-03", "date2": 20200403, "model": "CPN(ResNet-101)", "paper": { "title": "Context Prior for Scene Segmentation", "url": "https://cknow.io/lib/476b8176f60fc25e" }, "paper_data_uoa": "476b8176f60fc25e" }, { "Test Score": 0.5632, "Validation mIoU": 45.02, "code_links": [ { "title": "HolmesShuan/Location-aware-Upsampling-for-Semantic-Segmentation", "url": "https://github.com/HolmesShuan/Location-aware-Upsampling-for-Semantic-Segmentation" } ], "date": "2019-11-13", "date2": 20191113, "model": "LaU-regression-loss", "paper": { "title": "Location-aware Upsampling for Semantic Segmentation", "url": "https://cknow.io/lib/2c4353a03029ba80" }, "paper_data_uoa": "2c4353a03029ba80" }, { "Test Score": 0.5538, "Validation mIoU": 44.94, "code_links": [ { "title": "tensorflow/models", "url": "https://github.com/tensorflow/models/tree/master/research/deeplab" }, { "title": "CSAILVision/semantic-segmentation-pytorch", "url": "https://github.com/CSAILVision/semantic-segmentation-pytorch" }, { "title": "qubvel/segmentation_models", "url": "https://github.com/qubvel/segmentation_models" }, { "title": "divamgupta/image-segmentation-keras", "url": "https://github.com/divamgupta/image-segmentation-keras" }, { "title": "osmr/imgclsmob", "url": "https://github.com/osmr/imgclsmob" }, { "title": "hszhao/PSPNet", "url": "https://github.com/hszhao/PSPNet" }, { "title": "warmspringwinds/pytorch-segmentation-detection", "url": "https://github.com/warmspringwinds/pytorch-segmentation-detection" }, { "title": "y-ouali/pytorch_segmentation", "url": "https://github.com/y-ouali/pytorch_segmentation" }, { "title": "PRBonn/bonnet", "url": "https://github.com/PRBonn/bonnet" }, { "title": "manideep2510/eye-in-the-sky", "url": "https://github.com/manideep2510/eye-in-the-sky" }, { "title": "switchablenorms/SwitchNorm_Segmentation", "url": "https://github.com/switchablenorms/SwitchNorm_Segmentation" }, { "title": "kazuto1011/pspnet-pytorch", "url": "https://github.com/kazuto1011/pspnet-pytorch" }, { "title": "BOBrown/deeparsing-master", "url": "https://github.com/BOBrown/deeparsing-master" }, { "title": "jqueguiner/camembert-as-a-service", "url": "https://github.com/jqueguiner/camembert-as-a-service" }, { "title": "jqueguiner/image-segmentation", "url": "https://github.com/jqueguiner/image-segmentation" }, { "title": "kukby/Mish-semantic-segmentation-pytorch", "url": "https://github.com/kukby/Mish-semantic-segmentation-pytorch" }, { "title": "udacity/MLND-CN-Capstone-TGSImage", "url": "https://github.com/udacity/MLND-CN-Capstone-TGSImage" }, { "title": "leemathew1998/RG", "url": "https://github.com/leemathew1998/RG" }, { "title": "RituYadav92/Image-segmentation", "url": "https://github.com/RituYadav92/Image-segmentation" }, { "title": "monsieurmona/LinkCollectionAutonomousDriving", "url": "https://github.com/monsieurmona/LinkCollectionAutonomousDriving" }, { "title": "leemathew1998/GradientWeight", "url": "https://github.com/leemathew1998/GradientWeight" }, { "title": "RRoundTable/U_net", "url": "https://github.com/RRoundTable/U_net" }, { "title": "Lxrd-AJ/Advanced_ML", "url": "https://github.com/Lxrd-AJ/Advanced_ML" } ], "date": "2016-12-04", "date2": 20161204, "model": "PSPNet", "paper": { "title": "Pyramid Scene Parsing Network", "url": "https://cknow.io/lib/59c987cd01bc78f7" }, "paper_data_uoa": "59c987cd01bc78f7" }, { "Test Score": 0.5567, "Validation mIoU": 44.65, "code_links": [ { "title": "zhanghang1989/PyTorch-Encoding", "url": "https://github.com/zhanghang1989/PyTorch-Encoding" }, { "title": "zhusiling/EncNet", "url": "https://github.com/zhusiling/EncNet" }, { "title": "RyanHTR/PyTorch-Encoding", "url": "https://github.com/RyanHTR/PyTorch-Encoding" }, { "title": "kmaninis/pytorch-encoding", "url": "https://github.com/kmaninis/pytorch-encoding" }, { "title": "CWanli/myencoding", "url": "https://github.com/CWanli/myencoding" }, { "title": "Praveen94/pytorch-encoding", "url": "https://github.com/Praveen94/pytorch-encoding" } ], "date": "2018-03-23", "date2": 20180323, "model": "EncNet", "paper": { "title": "Context Encoding for Semantic Segmentation", "url": "https://cknow.io/lib/ee6cc4c538dd0cad" }, "paper_data_uoa": "ee6cc4c538dd0cad" }, { "Test Score": 0.5641, "Validation mIoU": 44.55, "code_links": [ { "title": "HolmesShuan/Location-aware-Upsampling-for-Semantic-Segmentation", "url": "https://github.com/HolmesShuan/Location-aware-Upsampling-for-Semantic-Segmentation" } ], "date": "2019-11-13", "date2": 20191113, "model": "LaU-offset-loss", "paper": { "title": "Location-aware Upsampling for Semantic Segmentation", "url": "https://cknow.io/lib/2c4353a03029ba80" }, "paper_data_uoa": "2c4353a03029ba80" }, { "Test Score": 0.5584, "Validation mIoU": 44.34, "code_links": [ { "title": "wuhuikai/FastFCN", "url": "https://github.com/wuhuikai/FastFCN" }, { "title": "srihari-humbarwadi/FastFCN_TF2.0", "url": "https://github.com/srihari-humbarwadi/FastFCN_TF2.0" }, { "title": "2anchao/VovJpu", "url": "https://github.com/2anchao/VovJpu" }, { "title": "yougoforward/Fast_psaa", "url": "https://github.com/yougoforward/Fast_psaa" }, { "title": "DongjuSin/computer-vision-proj", "url": "https://github.com/DongjuSin/computer-vision-proj" } ], "date": "2019-03-28", "date2": 20190328, "model": "EncNet + JPU", "paper": { "title": "FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation", "url": "https://cknow.io/lib/0a914f63be8b6dcd" }, "paper_data_uoa": "0a914f63be8b6dcd" }, { "Validation mIoU": 43.98, "code_links": [ { "title": "MenghaoGuo/AutoDeeplab", "url": "https://github.com/MenghaoGuo/AutoDeeplab" }, { "title": "NoamRosenberg/AutoML", "url": "https://github.com/NoamRosenberg/AutoML" }, { "title": "Dawars/auto_deeplab-pytorch", "url": "https://github.com/Dawars/auto_deeplab-pytorch" } ], "date": "2019-01-10", "date2": 20190110, "model": "Auto-DeepLab-L", "paper": { "title": "Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation", "url": "https://cknow.io/lib/19c743dc922ca203" }, "paper_data_uoa": "19c743dc922ca203" }, { "Validation mIoU": 43.2, "code_links": [ { "title": "CSAILVision/semantic-segmentation-pytorch", "url": "https://github.com/CSAILVision/semantic-segmentation-pytorch" }, { "title": "leoxiaobin/deep-high-resolution-net.pytorch", "url": "https://github.com/leoxiaobin/deep-high-resolution-net.pytorch" }, { "title": "HRNet/HRNet-Semantic-Segmentation", "url": "https://github.com/HRNet/HRNet-Semantic-Segmentation" }, { "title": "HRNet/HRNet-Object-Detection", "url": "https://github.com/HRNet/HRNet-Object-Detection" }, { "title": "HRNet/HRNet-Image-Classification", "url": "https://github.com/HRNet/HRNet-Image-Classification" }, { "title": "HRNet/HRNet-Facial-Landmark-Detection", "url": "https://github.com/HRNet/HRNet-Facial-Landmark-Detection" }, { "title": "HRNet/HRNet-MaskRCNN-Benchmark", "url": "https://github.com/HRNet/HRNet-MaskRCNN-Benchmark" }, { "title": "HRNet/HRNet-FCOS", "url": "https://github.com/HRNet/HRNet-FCOS" }, { "title": "yuanyuanli85/tf-hrnet", "url": "https://github.com/yuanyuanli85/tf-hrnet" }, { "title": "strivebo/image_segmentation_dl", "url": "https://github.com/strivebo/image_segmentation_dl" }, { "title": "shijianjian/HRNet_Keras", "url": "https://github.com/shijianjian/HRNet_Keras" }, { "title": "kukby/Mish-semantic-segmentation-pytorch", "url": "https://github.com/kukby/Mish-semantic-segmentation-pytorch" }, { "title": "laowang666888/HRNET", "url": "https://github.com/laowang666888/HRNET" } ], "date": "2019-04-09", "date2": 20190409, "model": "HRNetV2", "paper": { "title": "High-Resolution Representations for Labeling Pixels and Regions", "url": "https://cknow.io/lib/d37746e388d1d829" }, "paper_data_uoa": "d37746e388d1d829" }, { "Validation mIoU": 40.7, "code_links": [ { "title": "Microsoft/USBuildingFootprints", "url": "https://github.com/Microsoft/USBuildingFootprints" }, { "title": "guosheng/refinenet", "url": "https://github.com/guosheng/refinenet" }, { "title": "DrSleep/refinenet-pytorch", "url": "https://github.com/DrSleep/refinenet-pytorch" }, { "title": "oravus/lostX", "url": "https://github.com/oravus/lostX" }, { "title": "Attila94/refinenet-keras", "url": "https://github.com/Attila94/refinenet-keras" } ], "date": "2016-11-20", "date2": 20161120, "model": "RefineNet", "paper": { "title": "RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation", "url": "https://cknow.io/lib/d57701b48b8ba56c" }, "paper_data_uoa": "d57701b48b8ba56c" }, { "Validation mIoU": 32.31, "code_links": [ { "title": "fyu/dilation", "url": "https://github.com/fyu/dilation" }, { "title": "vlievin/Unet", "url": "https://github.com/vlievin/Unet" }, { "title": "Wanger-SJTU/FCN-in-the-wild", "url": "https://github.com/Wanger-SJTU/FCN-in-the-wild" }, { "title": "lpzjerry/Pedestrian-Attribute-LGNet", "url": "https://github.com/lpzjerry/Pedestrian-Attribute-LGNet" }, { "title": "keillernogueira/FDSI", "url": "https://github.com/keillernogueira/FDSI" }, { "title": "Entodi/meshnet-pytorch", "url": "https://github.com/Entodi/meshnet-pytorch" }, { "title": "srihari-humbarwadi/Multi-Scale-Context-Aggregation-by-Dilated-Convolutions", "url": "https://github.com/srihari-humbarwadi/Multi-Scale-Context-Aggregation-by-Dilated-Convolutions" }, { "title": "Rakeshpavan333/oct_dil", "url": "https://github.com/Rakeshpavan333/oct_dil" }, { "title": "harshmaru7/DilatedConv", "url": "https://github.com/harshmaru7/DilatedConv" } ], "date": "2015-11-23", "date2": 20151123, "model": "DilatedNet", "paper": { "title": "Multi-Scale Context Aggregation by Dilated Convolutions", "url": "https://cknow.io/lib/eab0185455d90cf6" }, "paper_data_uoa": "eab0185455d90cf6" }, { "Validation mIoU": 29.39, "code_links": [ { "title": "andyzeng/apc-vision-toolbox", "url": "https://github.com/andyzeng/apc-vision-toolbox" }, { "title": "martinkersner/py_img_seg_eval", "url": "https://github.com/martinkersner/py_img_seg_eval" }, { "title": "shenshutao/image_segmentation", "url": "https://github.com/shenshutao/image_segmentation" }, { "title": "azraelzhor/tf-FCN", "url": "https://github.com/azraelzhor/tf-FCN" }, { "title": "giovanniguidi/FCN-keras", "url": "https://github.com/giovanniguidi/FCN-keras" }, { "title": "jqueguiner/camembert-as-a-service", "url": "https://github.com/jqueguiner/camembert-as-a-service" }, { "title": "tsixta/jnet", "url": "https://github.com/tsixta/jnet" }, { "title": "jqueguiner/image-segmentation", "url": "https://github.com/jqueguiner/image-segmentation" }, { "title": "demul/image_segmentation_project", "url": "https://github.com/demul/image_segmentation_project" }, { "title": "SDMrFeng/quiz-w10-fcn", "url": "https://github.com/SDMrFeng/quiz-w10-fcn" }, { "title": "anoushkrit/Knowledge", "url": "https://github.com/anoushkrit/Knowledge" }, { "title": "YigeunLee/fcn32", "url": "https://github.com/YigeunLee/fcn32" }, { "title": "lanthlove/segmentation-fcn", "url": "https://github.com/lanthlove/segmentation-fcn" }, { "title": "stoensin/w10-cnn-SegmentationClass", "url": "https://github.com/stoensin/w10-cnn-SegmentationClass" }, { "title": "SophiaYuSophiaYu/FCN_SemanticSegmentation", "url": "https://github.com/SophiaYuSophiaYu/FCN_SemanticSegmentation" }, { "title": "koryako/AI-application", "url": "https://github.com/koryako/AI-application" }, { "title": "hitukensinn/quiz-w9-code", "url": "https://github.com/hitukensinn/quiz-w9-code" }, { "title": "sigtot/unet-auto", "url": "https://github.com/sigtot/unet-auto" }, { "title": "LeeMax117/FCN_8s", "url": "https://github.com/LeeMax117/FCN_8s" }, { "title": "GodPater/model_fcn", "url": "https://github.com/GodPater/model_fcn" }, { "title": "kbardool/mrcnn3", "url": "https://github.com/kbardool/mrcnn3" }, { "title": "pessimiss/ai100-w9-master", "url": "https://github.com/pessimiss/ai100-w9-master" }, { "title": "muramasa8191/DeepLearning", "url": "https://github.com/muramasa8191/DeepLearning" }, { "title": "LeeMax117/week10_homework", "url": "https://github.com/LeeMax117/week10_homework" }, { "title": "windar427/W10_work", "url": "https://github.com/windar427/W10_work" }, { "title": "krutikabapat/Sematic_Segmentation_Using_Pytorch", "url": "https://github.com/krutikabapat/Sematic_Segmentation_Using_Pytorch" }, { "title": "guilhermesantos/Semantic-Image-Segmentation", "url": "https://github.com/guilhermesantos/Semantic-Image-Segmentation" }, { "title": "zhikunluo/semantic-segmentation-collection", "url": "https://github.com/zhikunluo/semantic-segmentation-collection" }, { "title": "SethEBaldwin/FCN", "url": "https://github.com/SethEBaldwin/FCN" }, { "title": "fxfviolet/FCN_for_segmantic_segmentation", "url": "https://github.com/fxfviolet/FCN_for_segmantic_segmentation" }, { "title": "Niloy-Chakraborty/Image_Segmentation_Model", "url": "https://github.com/Niloy-Chakraborty/Image_Segmentation_Model" }, { "title": "Muniuliuma/FCN_8s", "url": "https://github.com/Muniuliuma/FCN_8s" }, { "title": "TianchengQ/FCN", "url": "https://github.com/TianchengQ/FCN" }, { "title": "zhuyi55/week10", "url": "https://github.com/zhuyi55/week10" }, { "title": "colorfulxd/WK10_FCN", "url": "https://github.com/colorfulxd/WK10_FCN" }, { "title": "resonance20/segmenter", "url": "https://github.com/resonance20/segmenter" } ], "date": "2014-11-14", "date2": 20141114, "model": "FCN", "paper": { "title": "Fully Convolutional Networks for Semantic Segmentation", "url": "https://cknow.io/lib/d657944208000a35" }, "paper_data_uoa": "d657944208000a35" }, { "Validation mIoU": 21.64, "code_links": [ { "title": "divamgupta/image-segmentation-keras", "url": "https://github.com/divamgupta/image-segmentation-keras" }, { "title": "alexgkendall/caffe-segnet", "url": "https://github.com/alexgkendall/caffe-segnet" }, { "title": "alexgkendall/SegNet-Tutorial", "url": "https://github.com/alexgkendall/SegNet-Tutorial" }, { "title": "tkuanlun350/Tensorflow-SegNet", "url": "https://github.com/tkuanlun350/Tensorflow-SegNet" }, { "title": "y-ouali/pytorch_segmentation", "url": "https://github.com/y-ouali/pytorch_segmentation" }, { "title": "PRBonn/bonnet", "url": "https://github.com/PRBonn/bonnet" }, { "title": "arahusky/Tensorflow-Segmentation", "url": "https://github.com/arahusky/Tensorflow-Segmentation" }, { "title": "navganti/SIVO", "url": "https://github.com/navganti/SIVO" }, { "title": "preddy5/segnet", "url": "https://github.com/preddy5/segnet" }, { "title": "TimoSaemann/caffe-segnet-cudnn5", "url": "https://github.com/TimoSaemann/caffe-segnet-cudnn5" }, { "title": "vqdang/xy_net", "url": "https://github.com/vqdang/xy_net" }, { "title": "vqdang/hover_net", "url": "https://github.com/vqdang/hover_net" }, { "title": "JosephPB/XNet", "url": "https://github.com/JosephPB/XNet" }, { "title": "ankit-ai/GAN_breast_mammography_segmentation", "url": "https://github.com/ankit-ai/GAN_breast_mammography_segmentation" }, { "title": "neuropoly/multiclass-segmentation", "url": "https://github.com/neuropoly/multiclass-segmentation" }, { "title": "ArkaJU/SegNet---Chromosome", "url": "https://github.com/ArkaJU/SegNet---Chromosome" }, { "title": "Lkruitwagen/remote-sensing-solar-pv", "url": "https://github.com/Lkruitwagen/remote-sensing-solar-pv" }, { "title": "jqueguiner/camembert-as-a-service", "url": "https://github.com/jqueguiner/camembert-as-a-service" }, { "title": "yinanzhu12/SegNet-keras-implementation", "url": "https://github.com/yinanzhu12/SegNet-keras-implementation" }, { "title": "yinanzhu12/SegNet-keras", "url": "https://github.com/yinanzhu12/SegNet-keras" }, { "title": "jqueguiner/image-segmentation", "url": "https://github.com/jqueguiner/image-segmentation" }, { "title": "alejandrodebus/SegNet", "url": "https://github.com/alejandrodebus/SegNet" }, { "title": "arsalhuda24/SS_lstm", "url": "https://github.com/arsalhuda24/SS_lstm" }, { "title": "XiangbingJi/Stanford-cs230-final-project", "url": "https://github.com/XiangbingJi/Stanford-cs230-final-project" }, { "title": "Tez01/SegNet-Keras-Implementation", "url": "https://github.com/Tez01/SegNet-Keras-Implementation" }, { "title": "falreis/segmentation-eval", "url": "https://github.com/falreis/segmentation-eval" }, { "title": "hosshonarvar/Image-Segmentation", "url": "https://github.com/hosshonarvar/Image-Segmentation" }, { "title": "tday01/CS193-Project", "url": "https://github.com/tday01/CS193-Project" }, { "title": "s9mondal9upriti/Segnet", "url": "https://github.com/s9mondal9upriti/Segnet" }, { "title": "rotemgoren/segNet", "url": "https://github.com/rotemgoren/segNet" }, { "title": "ajjdan/KaI", "url": "https://github.com/ajjdan/KaI" }, { "title": "navganti/SegNet", "url": "https://github.com/navganti/SegNet" }, { "title": "resonance20/segmenter", "url": "https://github.com/resonance20/segmenter" }, { "title": "alexandrelewin/FollowMe", "url": "https://github.com/alexandrelewin/FollowMe" }, { "title": "Zhanghongbin-github/SegNet-Tutorial", "url": "https://github.com/Zhanghongbin-github/SegNet-Tutorial" }, { "title": "HAN-ARK/GVSS-S.A.Drone", "url": "https://github.com/HAN-ARK/GVSS-S.A.Drone" }, { "title": "amaurylekens/SDC_Segnet", "url": "https://github.com/amaurylekens/SDC_Segnet" }, { "title": "NeuronDroid/GVSS-S.A.Drone", "url": "https://github.com/NeuronDroid/GVSS-S.A.Drone" }, { "title": "TqDavid/td", "url": "https://github.com/TqDavid/td" }, { "title": "RajkumarPreetham/Road-scene-understanding", "url": "https://github.com/RajkumarPreetham/Road-scene-understanding" }, { "title": "billlyzhaoyh/SegNetFromScratch", "url": "https://github.com/billlyzhaoyh/SegNetFromScratch" }, { "title": "DarkGeekMS/Semantic_Segmentation_Models_Keras", "url": "https://github.com/DarkGeekMS/Semantic_Segmentation_Models_Keras" }, { "title": "okn-yu/SegNet-A-Deep-Convolutional-Encoder-Decoder-Architecture-for-Image-Segmentation", "url": "https://github.com/okn-yu/SegNet-A-Deep-Convolutional-Encoder-Decoder-Architecture-for-Image-Segmentation" } ], "date": "2015-11-02", "date2": 20151102, "model": "SegNet", "paper": { "title": "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation", "url": "https://cknow.io/lib/2b85472fa0314713" }, "paper_data_uoa": "2b85472fa0314713" } ]